共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
针对非参数特征分析(nonparametric feature analysis,NFA)方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,计算复杂等缺点,提出M2DPCA+NFA相结合的方法。新方法对图像矩阵进行分块,再采用2DPCA进行特征提取,再实行NFA。该方法能有效提取图像的局部特征,而由于考虑到类内、类间的差异,可弥补PCA的缺陷。在ORL人脸库和XM2VTS人脸库上对LDA方法、NFA方法以及本方法分别进行了评价和测试,结果显示,所提方法在识别效果上优于LDA方法和NFA方法。 相似文献
3.
基于DWT,2DPCA和KPCA的人脸识别 总被引:1,自引:0,他引:1
利用离散小波变换对人脸图像进行压缩,提取人脸的低频分量,有效去除人脸图像高频分量的影响;再利用二维主元分析对小波变换后的人脸低频分量实行提取特征;然后使用核主元分析再次提取特征;最后用最小距离分类器完成人脸识别.基于ORL人脸数据库的实验结果表明,该算法能提高人脸识别率,有效减少计算量和降低计算复杂度. 相似文献
4.
介绍一种新的基于双向二维主成分分析(B2DPCA)和极端学习机(ELM)的人脸识别方法,该方法是根据人脸曲波图像分解和一种改进的降维技术,通过B2DPCA生成识别特征集来提高分类精度.该方法还能够有效地提高分类正确率和降低对原型数量的依赖.通过做大量的实验,把结果和现存技术相比较. 相似文献
5.
6.
主成成份分析(PCA)方法是人脸识别技术中常用的一种一维特征抽取方法。传统PCA方法用于人脸识别常常面临图像维数高,直接计算量的问题。为了解决这2个问题,人们对PCA进行了改进,提出并实现了多种基于PCA的人脸识别。对3种基于PCA的人脸识别方法做了理论上的研究和实验上的性能比较。实验结果表明PCA 2DPCA是其中综合效果最好的一种方法。 相似文献
7.
二维主成分分析方法是直接利用二维图像来构建方差矩阵的。为了充分利用样本类别信息,文章以类间散布矩阵特征向量作为投影方向进行特征抽取。首先用2DPCA先作一次横向压缩,对抽取出的特征矩阵再用2DPCA作一次纵向压缩。与传统二维主成分算法比较,极大压缩了特征的维数,加快了分类速度,提高了识别率。用ORL人脸数据库进行了实验验证,证明了本方法的可行性。 相似文献
8.
9.
基于改进2DPCA的红外图像人脸识别方法 总被引:1,自引:1,他引:1
红外成像具有抗干扰性强、独立于可见光源、防伪装等优点,这使得红外图像人脸识别可以在很大程度上弥补可见光人脸识别技术的缺陷和不足。结合红外图像人脸识别的特点,提出了一种基于改进2DPCA的红外图像人脸识别方法。在特征提取中加入Fisher思想,弥补传统2DPCA的缺陷。实验结果表明,这种识别方法不论从理论上还是从实验上都是可行的,具有良好的识别能力。 相似文献
10.
主成分分析(PCA)和线性判别分析(LDA)是人脸识别的特征提取中最为经典和广泛使用的方法,鉴于PCA和ANMM各自的优点,本文提出了称为Gabor-2DIANMM的方法,引入二维处理方法,使用从训练图像中提的Gabor特征对子空间进行训练,同时通过实验数据选取了ANMM中异类相近数据集的最佳取值范围.实验表明,这种方... 相似文献
11.
在人脸识别过程中,基于2DPCA特征提取方法具有直接、高效等特点。但它只包含了二阶统计信息,因而丢失了可能对分类很有用的高阶统计信息而使识别率受到一定影响。SVM采取升维的方法把线性不可分问题转变为线性可分问题,识别率较高,但直接对图像分类时运算量大、运行时间长。文章结合两者的优点,使用了2DPCA和SVM相结合的人脸识别方法,即先利用2DPCA进行特征提取,然后把降维后的数据输入SVM进行分类识别。该方法在ORL、YALE人脸库上的实验表明,不但可以提高识别率,而且所用时间明显减少。 相似文献
12.
基于子模式双向二维主成分分析的人脸识别 总被引:1,自引:0,他引:1
为了减轻人脸姿态、表情和光照条件等因素变化对识别率的影响,采用了一种子模式双向二维主成分分析(Sp-(2D)2PCA)的人脸识别新方法。该方法通过对原图像进行分块处理,能有效地抽取原图像的局部特征;同时,通过采用(2D)2PCA对分块得到的子图像矩阵直接进行特征抽取,避免了矩阵向量间的转化,能精确地计算协方差矩阵的特征向量,并能有效地降低特征维数。试验结果表明,在姿态、表情和光照条件变化的情况下,Sp-(2D)2PCA都具有较好的识别性能。 相似文献
13.
14.
主成分分析法(PCA)是人脸识别传统方法之一,是模式识别中一种普遍的线性组合算法.传统PCA算法因光照等外界因素和计算量较大等问题导致识别率较低.为了抑制这些缺点,主要研究基于PCA人脸识别算法改进的二维主成分分析法(2DPCA)和在2DPCA算法的基础上进行第二次特征提取的2DDPCA算法,并对PCA,2DPCA,2DDPCA这3种人脸识别算法在ORL和Yale人脸数据库上进行实验.实验主要从两方面进行分析,特征向量的维数、训练样本数与识别率的关系以及3种方法分别在数据库的时间对比.实验结果表明,提出的2DDPCA算法在不明显降低识别率的基础上,能有效提高识别速率,重建性能好. 相似文献
15.
本文在基于成分方法的基础上提出了一种低维空间线性人脸识别分析方法.该方法着重强调和突出判别能量较高的特征,从而提高在低维空间的人脸识别正确率.通过对ORL人脸数据库的实验,表明了本文提出的方法在低维空间比传统的线性判别分析法LDA和主成分分析法PCA有更高的识别正确率. 相似文献
16.
设计实现了一种基于几何特征的人脸识别考勤系统。通过图像的灰度积分投影来确定各器官的大体位置。通过提取人脸的左眼、右眼、鼻子和嘴巴的位置及其之间的相对距离关系等7个特征值,并赋予不同的权重来合成矢量人脸,进而与数据库进行对比实现人脸考勤。 相似文献