首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to explore the potential of the cold spray (CS) process in applying Cr3C2-25wt.%NiCr and Cr3C2-25wt%Ni coatings on 4140 alloy for wear-resistant applications. This article discusses the improvements in Cr3C2-based coating properties and microstructure through changes in nozzle design, powder characteristics stand off distance, powder feed rate, and traverse speed that resulted in an improved average Vickers hardness number comparable to some thermal spray processes. Cold spray process optimization of the Cr3C2-based coatings resulted in increased hardness and improved wear characteristics with lower friction coefficients. The improvement in hardness is directly associated with higher particle velocities and increased densities of the Cr3C2-based coatings deposited on 4140 alloy at ambient temperature. Selective coatings were evaluated using x-ray diffraction for phase analysis, optical microscopy (OM). and scanning electron microscopy (SEM) for microstructural evaluation, and ball-on-disk tribology experiments for friction coefficient and wear determination. The presented results strongly suggest that cold, spray is a versatile coating technique capable of tailoring the hardness of Cr3C2-based wear-resistant coatings on temperature sensitive substrates.  相似文献   

2.
Air gas dynamic spraying of powder mixtures: Theory and application   总被引:2,自引:1,他引:2  
The radial injection gas dynamic spray (RIGDS) technology of powder coatings deposition was considered for this work. A coating was created by injecting powders with variable compositions into a supersonic air jet and depositing powder on the substrate. This study describes the preliminary analysis of an air gas dynamic spray method realized by a portable RIGDS apparatus with a radial injection of powder. Attention was given to shock compaction processes during the coating structure formation and examples of powder mixtures utilization in RIGDS. It was shown that the operational parameters of supersonic powder-gas jet have a significant influence on the coating's microstructure, thus defining the high performance of the coating. Compaction and bonding of particles were analyzed. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

3.
The deposition of copper by cold gas dynamic spraying has attracted much interest in recent years due to the capability to deposit low-porosity oxide-free coatings. However, it is generally found that as-deposited copper has a signicantly greater hardness, and potentially lower ductility, than bulk material. In this article, copper was deposited by cold spraying using helium as the driving gas at both 298 and 523 K. Evidence is presented indicating that the material sprayed at the lower temperature exhibits a lower dislocation density throughout the grain structure than the material sprayed at the higher temperature. The low stacking fault energy of copper restricts recovery during annealing, and thus microstructural changes during annealing only proceed once recrystallization begins. The material sprayed at low temperature (with the low dislocation density) exhibited recrystallization at annealing temperatures as low as 373 K with a corresponding reduction in hardness. However, the copper sprayed with helium at 523 K was resistant to annealing at temperatures up to 473 K where the dislocations in the structure prevented recrystallization. However, at higher temperatures, recrystallization did proceed (with corresponding reductions in hardness). The fracture behavior of the copper that was cold sprayed with helium at 523 K, both in the as-sprayed condition and following annealing, was measured and explained in terms of the annealing mechanisms proposed. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

4.
几种金属基板上冷喷涂铜涂层的试验与模拟   总被引:3,自引:1,他引:3  
采用自主研制的冷喷涂设备在三种典型基板上进行喷涂试验,相同的工艺参数下,在铜和铝基板上得到良好的铜涂层,而在钢基板上则没有沉积.实验结果表明:涂层与基板界面、涂层内部颗粒界面结合良好,铜涂层组织致密,显微硬度高达150HV0.1;从涂层表面形貌扫描电镜(SEM)照片中可以观察到射流状的金属,说明颗粒发生了巨大变形,经计算知颗粒在碰撞中压缩率达69%;粉末和涂层的X射线衍射(XRD)结果表明铜粉末在冷喷涂过程中没有发生氧化.同时,数值模拟了铜颗粒与三种基板的碰撞过程,讨论了形成有效结合的判断准则,根据该准则,计算出铜颗粒在铜、铝、钢基板上的临界沉积速度分别为600m/s,500m/s,800m/s,从而解释了铜颗粒在三种基板上不同的沉积行为.  相似文献   

5.
Cold spraying: Innovative layers for new applications   总被引:1,自引:0,他引:1  
In recent years, results of many studies have been published that enhance understanding of the fundamental mechanisms of cold-spray coating generation and bonding as well as coating characteristics. From the points of view of a job shop in thermal spraying and of a user of cold-spraying equipment, a procedure, being used in development of new applications is presented herein. In addition to the technical requirements, some general factors determining the success of industrial use of spraying are shown. Examples of coldsprayed coatings are described to shos both the possibility of rapid integration of this new technique in established coating jobs as wells as exploration and use of new possibilities in cold spraying and development of applications that have not yet been a focus of thermal spray techniques. Suggestions for further research and development activities are made on the basis of practical cold-spray experience. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, Internaltional Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

6.
This work describes recent progress in cold-spray processing of conventional and nanocrystalline 2618 (Al−Cu−Mg−Fe−Ni) aluminum alloy containing scandium (Sc). As-atomized and cryomilled 2618+Sc aluminum powder were sprayed onto aluminum substrates. The mechanical behavior of the powders and the coatings were studied using micro-and nanoindentation techniques, and the microstructure was analyzed using scanning and transmission electron microscopy (SEM and TEM). The influence of powder microstructure, morphology, and behavior during deposition on the coating properties was analyzed. This work shows that Al−Cu−Mg−Fe−Ni−Sc coatings with a nanocrystalline grain structure can be successfully produced by the cold-spray process. Inspection of the scientific literature suggests that this is the first time a hardness value of 181 HV has been reported for this specific alloy. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

7.
High velocity oxy-fuel (HVOF) thermal spraying has been used to produce coatings of an Fe–18.9%Cr–16.1%B–4.0%C–2.8%Si–2.4%Mo–1.9%Mn–1.7%W (in at.%) alloy from a commercially available powder (Nanosteel SHS7170). X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were employed to investigate the powder, as-sprayed coatings and annealed coatings which had been heated to temperatures in the range of 550–925 °C for times ranging from 60 to 3900 min. Microhardness changes of the coatings were also measured as a function of annealing time and temperature. The powder was found to comprise amorphous and crystalline particles; the former had a maximum diameter of around 22 μm. The coating was composed of splat like regions, arising from rapid solidification of fully molten powder, and near-spherical regions from partially melted powder which had a largely retained its microstructure. The amorphous fraction of the coating was around 50% compared with 18% for the powder. The enthalpies and activation energies for crystallization of the amorphous phase were determined. Crystallization occurred in a two stage process leading to the formation of α-Fe (bcc), Fe1.1Cr0.9B0.9 and M23C6 phases. DSC measurements showed that the first stage occurred at 650 °C. Annealing the coating gave a hardening response which depended on temperature and time. The as-sprayed coating had a hardness of 9.2 GPa and peak hardnesses of 12.5 and 11.8 GPa were obtained at 650 and 750 °C, respectively. With longer annealing times hardness decreased rapidly from the peak.  相似文献   

8.
This article presents what is our present knowledge in plasma spraying of suspension, sol, and solution in order to achieve finely or nano-structured coatings. First, it describes the different plasma torches used, the way liquid jet is injected, and the different measurements techniques. Then, drops or jet fragmentation is discussed with especially the influence of arc root fluctuations for direct current plasma jets. The heat treatment of drops and droplets is described successively for suspensions, sols, and solutions both in direct current or radio-frequency plasmas, with a special emphasize on the heat treatment, during spraying, of beads and passes deposited. The resulting coating morphologies are commented and finally examples of applications presented: Solid Oxide Fuel Cells, Thermal Barrier coatings, photocatalytic titania, hydroxyapatite, WC-Co, complex oxides or metastable phases, and functional materials coatings.  相似文献   

9.
Cold gas dynamic spraying of iron-base amorphous alloy   总被引:2,自引:0,他引:2  
This paper describes recent efforts to synthesize iron-base amorphous alloys coatings using cold gas dynamic spraying. Characterization of the gas-atomized iron-base (Fe-Cr-Mo-W-C-Mn-Si-Zr-B) powder shows that the powder is fully amorphous when the particle diameter is below 20 μm. The coatings produced were composed of the same microstructure as the one observed in the feedstock powder. The overall deformation suggests the occurrence of a localized deformation process at the particle/particle boundary and a possible adiabatic deformation softening inside the powder particles during splat formation. The synthesis of fully amorphous, porous-free coatings using cold gas dynamic spraying was demonstrated in this work. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

10.
Fe-Al based intermetallic composite coatings were in-situ synthesized using Fe-Al/Cr3C2 or Fe-Al/WC cored wires and high velocity are spraying (HVAS) technology. The tribological properties of the Fe-Al based intermetallic composite coatings were investigated using a ball-on-disc tribotester from room temperature to 650 ℃. The results show that the coatings have relatively high bond strength and micro-hardness. The tribological properties of Fe-Al/Cr3C2 and Fe-Al/WC composite coatings were further analyzed and compared. Low and stable wear rates of the Fe-Al based intermetallic composite coatings were indicated from room temperature to 650 ℃. The excellent wear resistance of the composite coatings in high temperature was discussed.  相似文献   

11.
This study aimed to numerically and experimentally investigate lump formation during atmospheric plasma spraying with powder injection downstream the plasma gun exit. A first set of investigations was focused on the location and orientation of the powder port injector. It turned out impossible to keep the coating quality while avoiding lumps by simply moving the powder injector. A new geometry of the powder port ring holder was designed and optimized to prevent nozzle clogging, and lump formation using a gas screen. This solution was successfully tested for applications with Ni-5wt.%Al and ZrO2-7wt.%Y2O3 powders used in production. The possible secondary effect of plasma jet shrouding by the gas screen, and its consequence on powder particles prior to impact was also studied.  相似文献   

12.
Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800 °C and 120 min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44 nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480 ± 36 HV0.3) was higher than that of pure stainless steel coating (303 ± 33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.  相似文献   

13.
The objective of the present work was to determine the dynamic hardness of WC-Co coatings from the dynamic hardness of the coating substrate system. It was also the purpose of this work to evaluate the influence of coating composition, coating thickness, and substrate materials on the dynamic hardness of the coating. To achieve the above-mentioned objectives, WC-12%Co and WC-17%Co coatings were deposited by detonation spraying on three different substrate materials: mild steel, commercially pure (CP) aluminum, and CP titanium. The dynamic hardness of the coating/substrate composite was evaluated by a drop weight system. The dynamic hardness of the coating independent of the substrate was determined from the dynamic hardness of the coating/substrate composite.  相似文献   

14.
The dispersion of more than 20 vol.% submicrometer ceramic particles within a metallic matrix and the deposition of such a cermet to form a thick and tough coating presents problems. Most of the coating techniques have failed in attempting to homogeneously disperse very fine and hard particles in large amounts while avoiding their decomposition or reaction with the metal matrix during the deposition process. A simple and efficient method has been developed for producing ceramic-containing composite coatings. It consists in synthesizing cermet-based materials and in depositing them by a rapid solidification process such as thermal spraying. Boride- and carbide-based materials have been successfully obtained by plasma spraying reactive powders comprising the basic reagents. These materials, with a microstructure of submicrometer ceramic particles dispersed in a metallic matrix, exhibit good wear-resistant properties (abrasion and sliding wear). Finally, reactive core wire arc spraying is suggested as a flexible way to produce coatings containing up to 25 vol.% TiB2.  相似文献   

15.
运用等离子喷涂技术制备了TiC颗粒增强镍基合金复合涂层,分析了TiC颗粒增强镍基合金复合涂层的微观结构,研究了其摩擦磨损行为与机理。结果表明:TiC颗粒增强镍基合金复合涂层主要由γ-Ni,CrB,Cr7C3和TiC构成;复合涂层与基底材料间形成了厚度为9.4μm的过渡层,达到了冶金结合。当TiC颗粒含量为30%(体积分数)时,复合涂层的摩擦系数和磨损率均最低,即其摩擦系数为0.33,较纯镍基合金涂层降低了30%;其磨损率为0.3×10-3mm3/m,是纯镍基合金涂层的1/3。当载荷在6~10N的范围内时,复合涂层呈轻微磨损,其磨损机理主要为粘着磨损;当载荷达到12N时,复合涂层产生严重磨损,其磨损机制转变为硬质相的脱落和转移层的层脱剥落。  相似文献   

16.
An approach to measure and assess the oxygen contents of vacuum plasma spraying process atmospheres is introduced. Hereby it is envisaged to monitor vacuum plasma spraying processes and to control the uptake of oxygen in metal alloy coatings. Coating experiments were performed with Ni-Co-Cr-Al alloy bondcoat powders to proof the effectiveness of this approach. Additional experimental coatings made of NiTi powders show the benefit of controlling the oxygen contents especially for metallic alloys being highly affine to oxygen.  相似文献   

17.
1 INTRODUCTIONElectrolessNi B SiCcompositecoatingshavebeenstudiedathomeandinabroadbecauseoftheirbettercohension ,wearresistanceandhigherhardnessinrecentyears[1~ 4 ] .Rareearth (RE) playsanim portantroleinelectrolessNi BalloysandNi B SiCcompositecoatings ,andite…  相似文献   

18.
Review on Cold Spray Process and Technology: Part I—Intellectual Property   总被引:1,自引:0,他引:1  
The number of research papers as well as of patents and patent applications on cold spray and cold spray related technologies has grown exponentially in the current decade. This rapid growth of activity brought a tremendous amount of information on this technology in a short period of time. The main motivation for this review is to summarize the rapidly expanding common knowledge on cold spray to help researchers and engineers already or soon to be involved for their future endeavors with this new technology. Cold spray is one of the various names for describing an all-solid-state coating process that uses a high-speed gas jet to accelerate powder particles toward a substrate where they plastically deform and consolidate upon impact. Cold gas dynamic spray, cold spray, kinetic spray, supersonic particle deposition, dynamic metallization or kinetic metallization are all terminologies found in the literature that designate the above-defined coating process. This review on cold spray technology is divided into two parts. In this article, Part I, patents and patent applications related to this process are reviewed, starting from the first few mentions of the idea at the beginning of the 20th century to its practical discovery in Russia in the 1980s and its subsequent occidental development and commercialization. The patent review encompasses Russian and USA patents and patent applications. Part II will review the scientific literature giving a general perspective of the current understanding and capability of this process.  相似文献   

19.
A secondary suspension injection system was designed, manufactured and tested, with the aim of depositing composite coatings formed by a conventional air plasma sprayed matrix embedding heat-sensitive phases sprayed and protected in a liquid suspension flow.The system is composed of two main sections: a pressurized vessel, equipped with regulation and recirculation sub-systems, and an adjustable nozzle holder.Preliminary experimental activities were performed with an alumina/graphite system and focused on the evaluation of the effect of the main SSIS parameters on the amount of retained lubricating phase in the deposit, on deposition efficiency and coating microstructure. Alumina powders were fed in the plasma plume by a conventional injection system (argon carrier gas) whereas graphite powder was injected by SSIS from a water-based slurry.A CFD (Computational Fluid Dynamics) software, originally developed for the simulation of plasma spray processes, was implemented in order to confirm the possibility of predicting the effect of the variation of operating parameters on the amount of surviving heat-sensitive phases, potentially embedded in the ceramic matrix.Deposited composite coatings were characterized in terms of thickness, graphite content, phase distribution and tribological properties.  相似文献   

20.
Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating   总被引:1,自引:0,他引:1  
The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号