首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
含有全芳环扭曲、非平面结构氮杂环高性能树脂兼具耐高温可溶解特性,综合性能优异,解决了传统高性能工程塑料不能兼具耐高温可溶解的技术难题,加工方式多样,应用领域广泛。总结出"全芳环非共平面扭曲的分子链结构可赋予聚合物既耐高温又可溶解的优异综合性能"的分子设计思想。研制成功含二氮杂萘酮联苯结构的新型聚芳醚砜、聚芳醚酮、聚芳醚腈、聚芳酰胺、聚苯并咪唑、聚(1,3,5-三芳基均三嗪)等系列高性能树脂。本文将重点介绍含二氮杂萘酮结构聚(1,3,5-三芳基均三嗪)、聚苯并咪唑以及可注射成型四元共聚芳醚砜酮等合成、结构与性能,以及其应用技术的研究开发最新进展。  相似文献   

2.
新型可溶性聚芳醚腈酮的合成及其在绝缘漆领域的应用   总被引:3,自引:0,他引:3  
以4种含杂萘联苯结构的类双酚单体分别与2,6-二氯苯腈、4,4-二氟酮进行亲核缩聚反应,制备了一系列新型含杂萘联苯结构的聚芳醚腈酮树脂.研究了不同类双酚单体结构对聚合物性能的影响.所制备聚合物均具有较高的分子量,特性粘度在0.50dL/g以上,可溶解于N-甲基吡咯烷酮(NMP),N,N-二甲基乙酰胺(DMAc),氯仿等极性非质子型有机溶剂中.聚合物的结构以FT-IR进行表征;利用差示扫描量热仪(DSC)和热重分析仪(TGA)研究了聚合物的耐热性能,结果表明,该类聚芳醚腈酮树脂具有优异的耐热性能,玻璃化转变温度(Tg)在255~277℃之间,10%热失重温度(Td)在498℃以上.由该系列聚芳醚腈酮材料制成的绝缘漆具有良好的电绝缘性能,较高的机械强度,良好的柔韧性和附着力.  相似文献   

3.
文中以含醚键双二氮杂萘酮结构化合物4,4’-双(氧基(1,4-苯撑))-双二氮杂萘-1(2H)酮-二苯醚(OBDHPZ)为类双酚单体,与4,4’-二氟二苯砜(DFS)和2,6’-二氟苯腈(DFBN)进行高温溶液缩聚反应,通过调节聚合物分子主链中砜基和氰基等的含量,合成了一系列不同腈砜比的含醚键双二氮杂萘酮联苯结构聚芳醚腈砜树脂(PBPENS),其N-甲基吡咯烷酮(NMP)溶液在25℃的特性黏度为0.63~0.90 dL/g。通过红外光谱、核磁共振氢谱和广角X射线衍射仪表征了所合成聚芳醚腈砜的结构;通过差示扫描量热仪和热失重分析仪分析了该类聚芳醚腈砜的热性能,聚合物的玻璃化转变温度(Tg)在322~325℃,5%热失重温度(Td5%)在485~500℃。该类聚合物在常温时可溶解于NMP、N,N-二甲基乙酰胺(DMAc)、氯仿等极性非质子有机溶剂;采用溶液浇筑法制备了含醚键双二氮杂萘酮结构聚芳醚腈砜薄膜,薄膜的拉伸强度可以达到56~65 MPa。  相似文献   

4.
新型杂环氯代聚芳醚的合成与性能   总被引:3,自引:0,他引:3  
以自制的新型氯代类双酚化合物4-(3-氯-4-羟基苯基)-2,3-二氮杂萘-1-酮(OC-HPPZ)为单体,分别与4,4/-二氟二苯酮、4,4/-二氯二苯砚和1,4-双-(4-氯代苯甲酰基)苯进行缩聚反应,合成了一类新型的具有较高分子质量的聚芳醚材料。利用FTIR、1H NMR等分析手段研究了类双酚化合物OC-HPPZ及其聚合物的结构;采用差示扫描量热仪(DSC)、热重分析仪(TGA)研究了聚合物的耐热性能,结果表明,新型聚芳醚砜、聚芳醚酮和聚芳醚酮酮具有优异的耐热性能和热稳定性能,其玻璃化转变温度为234~287℃,在氮气氛中5%热失重温度均高于420℃,新型氯代聚芳醚在氯仿、N、N-二甲基乙酰胺等极性有机溶剂中可溶解并浇铸得到透明、韧性的薄膜。  相似文献   

5.
以新合成的含联苯芳醚单体4,4'-二(4-联苯氧基)二苯砜(BBPOPS)与4,4'-二-苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)为单体,以路易斯酸无水三氯化铝(AlCl3)为催化剂进行三元共缩聚,制备了大分子主链含联苯结构的聚芳醚砜醚酮酮(PESEKK)无规共聚物.通过核磁共振仪、红外光谱仪、差示扫描量热仪、广角X射线衍射和紫外-可见分光光度计等分析方法表征了PESEKK无规共聚物的结构与性能.实验结果表明,在大分子主链引入联苯结构能提高PESEKK无规共聚物的耐热性,玻璃化转变温度(Tg)高于189℃,且Tg随着共聚物中联苯结构含量的增加而升高;PESEKK无规共聚物为非晶态结构,其热分解温度(Td)为544℃,具有优异的热性能.无规共聚物可溶解于二甲基亚砜、N-甲基吡咯烷酮、氯仿等有机溶剂,并可涂膜制得柔韧性薄膜,薄膜拉伸强度大于84 MPa,弹性模量大于1.89 GPa,力学性能较好.  相似文献   

6.
以含二氮杂萘酮结构的新型聚芳醚砜酮(PPESK)为底膜材料,以硅橡胶为涂层材料,制备了中空纤维气体分离复合膜.重点考察了N-甲基吡咯烷酮(NMP)/乙醇(EtOH)θ组成对气体分离膜性能的影响.结果表明,NMP/EtOHθ组成对膜性能有较明显的影响,采用略低于NMP/EtOHθ组成的铸膜液制备的膜分离性能较好.  相似文献   

7.
以4-(4-羟基苯基)-2,3-二氮杂萘-1-酮与1-氯-4-(4-氯苯甲酰基)萘单体经亲核取代反应,合成了含二氮杂萘酮和萘结构的聚芳醚酮。用FT-IR、∧1H-NMR、DSC、TG、WAXD等方法对聚合物进行了表征,研究了聚合物的溶解性能。结果表明,该聚芳醚酮是一种耐热等级高的可溶性无定形聚合物。  相似文献   

8.
含二氮杂萘酮结构聚芳醚砜酮超滤膜的研制   总被引:8,自引:5,他引:3  
以新型耐高温特种工程塑料———含二氮杂萘酮结构聚芳醚砜酮(PPESK)为膜材料、N-甲基-2-吡咯烷酮为溶剂配制铸膜液,采用相转化法在平板刮膜机上制备PPESK超滤膜,考察了PPESK含量、PPESK的特性黏数、添加剂含量和膜厚度等对超滤膜性能的影响.在0.1MPa的操作压力下,所制得PPESK超滤膜的纯水通量可高达约148L/(m2·h),对聚乙二醇10000的截留率高于93%.  相似文献   

9.
通过低温溶液亲电共缩聚合成了聚芳醚醚酮醚砜醚酮(Ia)、聚芳醚酮酮醚砜醚酮(Ib),甲基取代、双邻位甲基取代的聚芳醚酮酮醚酮醚砜醚酮(Ic、Id)等4种结构新型的共聚物。用傅里叶红外光谱仪(FT-IR)、核磁共振(1H-NMR)、差示扫描量热仪(DSC)、热重分析(TGA)、X射线衍射仪(WAXD)对聚合物进行了结构表征和性能测试。结果表明,共聚物有较高的玻璃化转变温度(Tg)177℃~188℃;较高的热分解温度(Td5%≥460℃),共聚物能溶解于N-甲基-2-吡咯烷酮,四氯乙烷和浓硫酸中;甲基取代的共聚物溶解性得到了明显改善,室温下还能溶于二氯甲烷、二氯乙烷、氯仿、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中。  相似文献   

10.
含二氮杂萘酮联苯结构聚芳酯的合成和性能   总被引:1,自引:0,他引:1  
以新二酸4-[4-(4-羧基苯氧基)苯基]-2-(4-羧基苯基)二氮杂萘-1-酮(1)和4种商品二酚进行溶液缩聚反应,制备出一系列古杂萘联苯结构新型聚芳酯,其特性粘度在0.50-0.58 dL·g-1之间.以FT-IR.1H-NMR证明了聚合物的结构.该类聚芳醇的玻璃化转变温度在209-272℃之间,在N2气氛下10%的热失重温度在468-481℃之间.聚芳本具有无定型结构,可溶解于N-甲基吡咯烷酮(NMP),N,N-二甲基乙酰胺(DMAc),间甲酚,吡啶和氯仿(CHCls)中.扭曲和非共平面的结构存在使该系列聚芳酯既耐高温又具有良好的溶解性能.  相似文献   

11.
含二氮杂萘结构聚醚砜酮酮的合成及表征   总被引:4,自引:0,他引:4  
以1,4-二(4-氯代苯甲酰基)苯及4,4'-二氯二苯砜单体与4-(4-羟基苯基)-2,3-二 氮杂萘-1-酮单体经来核取代反应,合成了一系列分子主链中含有C-N键的杂环聚醚砜酮酮三元共聚物 PPESKK,用 FT-IR、1H-NMR、DSC、 TGA、 X射线衍射等方法对共聚物进行了表征,结 果表明,PPESKK为具有高热稳定性的可溶性无规共聚物,巨随着砜基比例的增加,共聚物玻璃化温度 逐渐升高  相似文献   

12.
合成了聚醚砜醚酮酮(PESEKK),研究了纯树脂的热、力学性能。制备了炭纤维和聚醚砜醚酮酮(炭纤维是标准T300)复合材料,着重研究了此新型复合材料的力学性能。结果表明,随着复合材料中PESEKK树脂质量比增加,T300CF/PESEKK复合材料的拉伸强度、弯曲强度、拉伸模量和弯曲模量逐渐增加。其中弯曲强度和弯曲模量增加的幅度比拉伸强度和拉伸模量增加的幅度更大。当PESEKK质量分数为60%左右时,复合材料的综合力学性能达到最佳值。因此聚醚砜醚酮酮可作为增强炭纤维力学性能的基体树脂。  相似文献   

13.
以1-萘酚和1,4-二(4-氟苯羰基)苯为起始原料,经亲核取代反应,合成了一种新的含萘环结构芳醚单体1,4-[4-(1-萘氧基)苯羰基]苯(BNOBB)。以路易斯酸无水三氯化铝(AlCl 3)为催化剂,将该单体与对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)进行缩聚,合成了一种主链含萘环结构的无规共聚物聚醚酮酮醚酮酮(PEKKEKK)。采用傅里叶变换红外光谱仪、核磁共振、差示扫描量热仪、热重分析仪和广角X射线衍射等技术手段对PEKKEKK树脂的结构和性能进行测试。结果表明,该树脂为非晶态结构,具有较高的玻璃化转变温度(T g>181℃)和热分解温度(T 5%>502℃);易溶解于氯仿、1,2-二氯乙烷、N,N-二甲基乙酰胺等有机溶剂中,可涂膜获得透明薄膜;拉伸强度大于83 MPa,力学性能较好。  相似文献   

14.
新型杂萘联苯聚芳醚腈(酮)耐高温绝缘漆的研制   总被引:1,自引:0,他引:1  
系统地研究了杂萘联苯PPEN(K)聚合物在绝缘漆领域的应用,考察了PPENK中腈、酮含量对绝缘漆性能的影响,发现当N/K=1/1时,绝缘漆具有优异的机械性能;对比了PPENK、PPENKK、PPEN和PPEN—BPA几种聚合物所制备的绝缘漆的性能,认为以PPENK树脂为主要成膜物制得的绝缘漆综合性能最优;在此基础上,选择适当的涂线工艺,成功地研制出了新型PPENK漆包线,其机械性能、电性能和热性能都远远高于220级聚酰亚胺漆包线国家标准要求。  相似文献   

15.
1,3,5-三嗪基聚合物具有优异综合性能,但传统1,3,5-三嗪基聚合物难溶解、难熔融,通常在高温高压下才能制得高分子量聚合物,限制了其在分离膜、绝缘漆和粘合剂等领域的应用。文中基于分子设计理论,分别在聚合物分子链中引入柔性侧基、非对称性结构、扭曲或扭曲非共平面结构等,合成了系列既耐高温又可溶解的含1,3,5-三嗪结构新型聚芳醚高性能聚合物,探讨了分子结构等对聚合物溶解性、热性能和力学性能间影响规律。  相似文献   

16.
新型磺化聚醚砜酮复合纳滤膜   总被引:10,自引:4,他引:6  
以含二氮杂萘酮结构新型聚醚砜酮超滤膜为底膜,以磺化聚醚砜酮为复合膜层材料制备复合纳滤膜,研究了浸涂稀溶液组成(磺化聚醚砜酮含量、磺化度、添加剂等)、热处理温度及时间等对复合膜性能的影响,考察了复合膜的耐热性能。  相似文献   

17.
以氯苯、α-氯代萘、氯磺酸、二氯亚砜为原料,合成了4-氯-1-萘磺酰氯,经Frield-Craft磺酰基化反应,合成了含两个1,4-萘结构的4-氯-1-(4′-氯-1-萘磺酰基)萘(CCNSN)。CCNSN分别与双酚A、酚酞、对苯二酚及4-(4-羟基苯基)-2,3-二氮杂萘-1-酮经溶液亲核取代逐步聚合反应,合成了4种含1-(萘-1-磺酰基)萘结构的聚芳醚(Pa~Pd)。用NMR、FT-IR对单体和聚合物进行了表征,证明其结构正确;用DSC、TGA和WAXD等方法对聚合物的热性能及结晶性进行了表征,结果表明,聚合物的玻璃化转变温度在226℃~318℃之间,氮气环境下,5%热失重的起始温度均在450℃以上,说明具有良好的热稳定性;考察了聚合物的溶解性能,除Pc不溶于常见的有机溶剂外,Pa、Pb、Pd皆可溶于氯仿(CHCl3)、1,1,2,2-四氯乙烷(TCE)和N,N-二甲基乙酰胺(DMAC)、N-甲基吡咯烷酮(NMP)等非质子极性溶剂。  相似文献   

18.
A nanocomposite with soluble high-performance poly(phthalazinone ether sulfone ketone) (PPESK) as matrix and multi-walled carbon nanotube buckypaper (MWCNT-BP) as reinforcement was fabricated by hot-press processing. The morphologies, dynamic and static mechanical behavior, thermal stability of the MWCNT-BP/PPESK composites were studied using scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analyzer (TGA). SEM microphotographs revealed a high impregnation degree of the MWCNT-BP/PPESK composites. Dynamic and static mechanical analysis revealed that the nanocomposites possessed high storage modulus, and good retention rate of mechanical strength even at 250 °C, which is mainly attributed to satisfied impregnation and strong interactions between MWCNT-BP and PPESK. Thermogravimetric analysis exhibited that the nanocomposites had excellent thermal stability. These investigations confirm that MWCNT-BP can be effectively used to manufacture high-loading CNT/PPESK composites with improved properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号