首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of the fluorescence emission intensity from nano ZnO colloid as a function of incident laser power is investigated. Emission in the near UV region from ZnO particles in diethylene glycol medium is studied using frequency tripled radiations at 355 nm from Nd-YAG laser. The spectrum, which was broad at lower pump intensities, exhibits an increase in the intensity as well as line narrowing above a threshold. The emission occurs in all directions and varies with pumping area. Results indicate the phenomenon of random lasing action due to multiple scattering inside the highly disordered medium. Coherent back scattering experiments confirm multiple scattering and weak localization effects in these samples. These preliminary studies show that colloidal nano ZnO medium is a promising candidate for random lasers.  相似文献   

2.
ZnO@Porous Media, Their PL and Laser Effect   总被引:1,自引:0,他引:1  
Optoelectronic nanocomposites are a new class of materials, which exhibit very interesting and particular properties and attract a growing attention due to their potential applications in information storage and optoelectronic devices. Zinc oxide, ZnO, is one of the most interesting binary semiconductor (3.37 eV) with very important optical properties, which can be used in the fields such as short wavelength lasers, blue light emitting diodes, UV detectors, gas sensors, etc. This paper reviews the very recent progress in the prepa- ration of silica-based ZnO nanocomposites. After an introduction reviewing the theoretical background, the article will begin with a survey of the optical properties and the quantum size effect (QSE) of ZnO/SiO2 nanocomposites prepared by the inclusion of ZnO nanoclusters inside silica mesoporous materials. The second part will focus on one of the most interesting properties of ZnO/SiO2 nanocomposites, which is the random lasing effect after one- and two-photon excitation. The final part will deal with the introduction of ZnO nanoparticles inside microporous zeolites and the observation of QSE. For comparison, the photoluminescence (PL) and QSE properties of ZnS nanoparticles occluded in mesoporous media are also described. New potential applications will be discussed since short-wavelength devices are required by industry to design, for instance, new information storage supports and biolabelling devices.  相似文献   

3.
We report room-temperature ultraviolet lasing action in large quantities of uniform multilayer ZnO nanosheets grown by a vapor-transport method via thermal evaporation of Zn powder. An excellent multimode lasing emission at a center wavelength of 390 nm with a mode linewidth less than 0.33 nm occurs above an excitation threshold of 8 mJ pulse(-1) cm(-2). The observed multimode lasing action may be attributed to microcavity effect and low concentration of defects in the nanosheets. We believe that the single-mode lasing emission can be obtained by growing completely uniform nanosheets. ZnO nanosheet is an attractive candidate as gain medium to realize ultraviolet semiconductor diode lasers.  相似文献   

4.
High-performance multiphoton-pumped lasers based on cesium lead halide perovskite nanostructures are promising for nonlinear optics and practical frequency upconversion devices in integrated photonics.However,the performance of such lasers is highly dependent on the quality of the material and cavity,which makes their fabrication challenging.Herein,we demonstrate that cesium lead halide perovskite triangular nanorods fabricated via vapor methods can serve as gain media and effective cavities for multiphoton-pumped lasers.We observed blue-shifts of the lasing modes in the excitation fluence-dependent lasing spectra at increased excitation powers,which fits well with the dynamics of Burstein-Moss shifts caused by the band filling effect.Moreover,efficient multiphoton lasing in CsPbBr3 nanorods can be realized in a wide excitation wavelength range (700-1,400 nm).The dynamics of multiphoton lasing were investigated by time-resolved photoluminescence spectroscopy,which indicated that an electron-hole plasma is responsible for the multiphoton-pumped lasing.This work could lead to new opportunities and applications for cesium lead halide perovskite nanostructures in frequency upconversion lasing devices and optical interconnect systems.  相似文献   

5.
近年 来,由于蓝绿发光二极管和激光二极管的发展,宽禁带III-V族氮化行和ZnSe基II-VI族半导体材料成为举世瞩目的研究热点之一,取得这些进展的重要原因是材料质量的不断改善以及创新性的掺杂方法的引入。氧化锌(ZnO)是具有特殊性质的宽禁囊直接带隙II-VI族半导体材料,具有在半导体材料中最高的激子束缚能(60meV),将是另一种重要的商用光子器件材料。本文将描述高质量氧化锌单晶薄膜的等离子分子  相似文献   

6.
We report a new bubble-assisted growing and etching method for constructing ZnO nanowire (NW) arrays with cavity tops. Firstly, a ZnO NW array structure was formed on a ZnO-seed-layer-patterned Si substrate by combining e-beam lithography and a wet chemical method. Secondly, a new kind of ZnO NW array with cavity tops could be formed by a subsequent bubble-assisted growing and etching. These ZnO NW array structures with different morphologies exhibited different photoluminescence properties, showing their potential applications in lasing cavities, stimulated emitters, nanogenerator, photocatalysis and light-emitting diodes. The bubble-assisted etching method will open a new door for morphology design of ZnO and other semiconductor nanowire arrays at special sites.  相似文献   

7.
Since the successful demonstration of a blue light-emitting diode (LED), potential materials for making short-wavelength LEDs and diode lasers have been attracting increasing interest as the demands for display, illumination and information storage grow. Zinc oxide has substantial advantages including large exciton binding energy, as demonstrated by efficient excitonic lasing on optical excitation. Several groups have postulated the use of p-type ZnO doped with nitrogen, arsenic or phosphorus, and even p-n junctions. However, the choice of dopant and growth technique remains controversial and the reliability of p-type ZnO is still under debate. If ZnO is ever to produce long-lasting and robust devices, the quality of epitaxial layers has to be improved as has been the protocol in other compound semiconductors. Here we report high-quality undoped films with electron mobility exceeding that in the bulk. We have used a new technique to fabricate p-type ZnO reproducibly. Violet electroluminescence from homostructural p-i-n junctions is demonstrated at room-temperature.  相似文献   

8.
ZnO films were prepared by atomic layer deposition upon a SiO2 layer on a Si substrate and treated by rapid thermal annealing. The optically-pumped random lasing actions with low threshold values were observed in the ZnO films on SiO2/Si substrates. With the decrease in ZnO film thickness or the increase in post-annealing duration, the stimulated emission shifted toward the shorter wavelength and the lasing threshold increased. The results can be attributed to the inter-diffusion between ZnO and SiO2, which causes the modification of bandgap renormalization in ZnO.  相似文献   

9.
Room-temperature random lasing is achieved from an n-AlN/p-GaN heterojunction. The highly disordered n-AlN layer, which was deposited on p-GaN:Mg layer via radio frequency magnetron sputtering, acts as a scattering medium to sustain coherent optical feedback. The p-GaN:Mg layer grown on sapphire provides optical amplification to the scattered light propagating along the heterojunction. Hence, lasing peaks of line width less than 0.4 nm are emerged from the emission spectra at round 370 nm for the heterojunction under forward bias larger than 5.1 V. Lasing characteristics of the heterojunction are in agreement with the behavior of random lasers.  相似文献   

10.
One-dimensional (1D) zinc oxide (ZnO) nanostructures have been extensively and intensively studied for several decades not only for their extraordinary chemical and physical properties, but also for their current and future different electronic and optoelectronic device applications. This review provides a brief overview of the progress of different synthesis methods and applications of 1D-ZnO nanostructures. Morphology of ZnO nanostructures grown by various methods and progress in the optical properties are briefly described. Using low-temperature photoluminescence (LTPL) study, detailed informations about the defect states and impurity of such nanostructures are reported. Improvement of field emission properties by modifying the edge of 1D-ZnO nanostructures is briefly discussed. Applications such as different sensors, field effect transistor, light-emitting diodes (LEDs), and photodetector are briefly reviewed. ZnO has large exciton binding energy (60 meV) and wide band gap (3.37 eV), which could lead to lasing action based on exciton recombination. As semiconductor devices are being aggressively scaled down, ZnO 1D nanostructures based resistive switching (RS) memory (resistance random access memory) is very attractive for nonvolatile memory applications. Switching properties and mechanisms of Ga-doped and undoped ZnO nanorods/NWs are briefly discussed. The present paper reviews the recent activities of the growth and applications of various 1D-ZnO nanostructures for sensor, LED, photodetector, laser, and RS memory devices.  相似文献   

11.
The properties of random lasers in π‐conjugated polymer films and solutions infiltrated into opal photonic crystals are reviewed. We show that random lasing is a generic phenomenon that occurs in disordered gain media at an excitation intensity regime higher than that giving rise to amplified spontaneous emission. The emission radiation is coherent as demonstrated by photon statistics methods, and its spectrum contains many laser modes from which a typical cavity length can be obtained using Fourier transform spectroscopy. Since the random cavities are independent from each other, we show that laser emission in several colors is possible when mixing different dyes in the same random cavities. In addition, it is demonstrated that random lasing is formed in many disordered media with various scattering properties ranging from a regime of light prelocalization to that of weak scattering.  相似文献   

12.
Dual-band semiconductor microbelt lasing are promising for multifunctional applications ranging from optical communication to spectroscopy analysis. Here, we demonstrated a dual-band Fabry-Perot (F-P) lasing from both length and width directions in a single ZnO microbelt. The lasing performance, spectral variation and mode structure significantly depended on the cavity size, which corresponded to the length and width of the ZnO microbelts. The resonant process and mechanism were investigated systematically through the experimental analysis and numerically FDTD simulation. The results of the dual-band F-P lasing modes and wide lasing wavelength are helpful to design the dual-wavelength electronic and optoelectronic devices.  相似文献   

13.
We investigated the lasing modes of quasi-stadium laser diodes that have confocal cavity geometries, with stripe electrode contacts formed either along the cavity axis or a diamond-shaped trajectory. It was clearly demonstrated that by using narrow electrode contact patterns of 2 μm width, the lowest-order axial and ring modes were excited selectively. On the other hand, the second-lowest-order axial and ring modes were excited by using broad electrode patterns of 14 μm width. Experimentally obtained far-field patterns for lasers with broad and narrow electrode contact patterns agree very well with the simulation results obtained using an extended Fox-Li mode calculation method.  相似文献   

14.
Diode lasers with a power output superior to 100 mW are in widespread use in medical as well as research applications. However, for such diodes lasing oscillation generally occurs simultaneously in several longitudinal and transverse modes that are unsuitable for high-resolution spectroscopy. We spectrally narrow a 100-mW broad-area diode laser by first using an extended cavity and then an electrical feedback produced by a Pound-Drever-Hall stabilization on a low-finesse reference cavity. Reduction of the linewidth by more than 6 orders of magnitude is achieved (the output linewidth is narrowed from 1 THz to less than 500 kHz), making possible its use for high-resolution spectroscopy. The power and the spectral qualities of this diode laser allow us to induce quantum jumps toward the D5/2 metastable level of single Ca+ ions.  相似文献   

15.
Broadband near ultraviolet (NUV) random laser was achieved by Au nanoparticle loaded ZnO 3-D nanowalls. Au nanoparticle was loaded on ZnO 3-D nanowalls by photo-chemical deposition method using ionic liquid. The optical confinement by the 3-D nanowalls and enhancement of incident light scattering by Au nanoparticle increase the number of resonant modes, and thus leading to a broadband multiple spectrum random lasing. The results demonstrate an important step towards to expand the application scope of NUV laser on medical imaging of cells, solid-state lighting and optical sensor.  相似文献   

16.
Technical Physics Letters - Single-mode lasing at room temperature in quantum-cascade lasers (QCLs) with arched cavity design has been demonstrated. The output optical power in single-mode lasing...  相似文献   

17.
It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers.In this paper,two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities.This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision.Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles.The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher sidemode suppression ratio and lower threshold.The mechanism that led to this enhancement has been described in detail.  相似文献   

18.
The ZnO twin-rods microstructure synthesized by hydrothermal method was employed as a whispering gallery mode lasing microcavity. The growth mechanism of the ZnO twin-rods single crystal was analyzed. Three-photon absorption induced whispering gallery mode lasing with low threshold was observed under the excitation of femtosecond pulses at 800 nm. The spectra from the individual branch and the connection part were investigated, and the whispering gallery mode lasing mechanism was discussed.  相似文献   

19.
Micro- and nanocrystalline ZnO powders and films have been prepared under mild hydrothermal conditions, and their spectroscopic and lasing properties have been investigated. The polycrystalline ZnO films showed stimulated emission with a lasing threshold of 0.67 MW/cm2. Analysis of their lasing behavior suggests that the stimulated emission is generated by individual crystallites, each acting as a microlaser.  相似文献   

20.
A gain flattening coating was designed and fabricated to enhance the wavelength tuning for asymmetric multiple quantum well (AMQW) lasers. After coating, a nonlasing gap in the middle range of the lasing wavelengths, which might exist for AMQW lasers that are operated without an external cavity, was overcome and the total lasing range was increased. With the coating, the tuning range of an AMQW laser, as measured without an external cavity, was increased to 85?nm from 70?nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号