首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adrenal autoantibodies (ACA) are markers of adrenal cortex involvement in idiopathic Addison's disease. Recently the 21-hydroxylase (21-OH) enzyme has been discovered to be the major autoantigen of the ACA. A potential role of these antibodies in determining adrenal failure by inhibition of the 21-OH has been recently postulated. To test this hypothesis, cortisol and aldosterone (final products of adrenal steroid synthesis) and 17-hydroxyprogesterone (17-OH-progesterone) (as a marker of 21-OH impairment) have been investigated in baseline conditions and after ACTH (1-24) stimulation test in a group of 42 patients positive for both ACA and 21-OH autoantibodies. Patients were divided into five groups according to the stages (0-4) of adrenal failure. With progression toward overt Addison's disease, baseline 17-OH-progesterone, cortisol, and aldosterone remained almost unchanged but with impairment of their responses to ACTH (1-24) stimulation. The 17-OH-progesterone/cortisol ration remained normal both in basal conditions and after stimulation at stages 0-3. At stage 4 (overt Addison's disease), this ratio increased in baseline condition with no changes after ACTH (1-24), probably because of persistent 17-OH-progesterone gonadal production. In conclusion, there was a progressive and concomitant impairment of the synthesis of all steroids tested over various phases of adrenal failure. The pattern of response of the 17-OH-progesterone/cortisol ratio to ACTH stimulation in patients with 21-OH autoantibodies was not consistent with the autoantibodies inhibiting the 21-OH activity. This suggests that the inhibiting effect of 21-OH autoantibodies on 21-OH activity is not usually evident in vivo.  相似文献   

2.
Adrenal cortex antibodies (ACA) were measured by immunofluorescence in 8840 adult patients with organ-specific autoimmune diseases without overt hypoadrenalism. Sixty-seven (0.8%) patients were ACA-positive, with the highest prevalence in those with premature ovarian failure (8.9%). Forty-eight ACA-positive and 20 ACA-negative individuals were enrolled into a prospective study. Antibodies to steroid 21-hydroxylases (21-OH), steroid 17 alpha-hydroxylase (17 alpha-OH) and cytochrome P450 side chain cleavage enzyme (P450scc) were measured by immunoprecipitation assay. Human leucocyte antigens D-related (HLA-DR) genotyping was also carried out and adrenal function assessed by ACTH test. On enrollment, 75% of ACA-positive patients had a normal adrenal function, while 25% revealed a subclinical hypoadrenalism. 21-OH antibodies were positive in 91% of ACA-positive sera. Eleven patients were positive for steroid-cell antibodies by immunofluorescence, and 9 revealed a positivity for antibodies to 17 alpha-OH and/or P450scc. During the prospective study, overt Addison's disease developed in 21% and subclinical hypoadrenalism in 29% of ACA-positive patients, while 50% maintained normal adrenal function. Progression to Addison's disease was more frequent in patients with subclinical hypoadrenalism, high titers of ACA and higher levels of 21-OH antibodies, complement-fixing ACA and HLA-DR3 status. All 20 persistently ACA-negative patients were also negative for antibodies to 21-OH, 17 alpha-OH, and P450scc, and all maintained normal adrenal function during follow-up. In conclusion, the detection of ACA/21-OH antibodies in adults is a marker of low progression toward clinical Addison's disease.  相似文献   

3.
Idiopathic Addison's disease develops as a consequence of autoimmune destruction of steroid-producing cells in the adrenal gland. A major autoantigen is 21-hydroxylase (21OH; P450c21), which is involved in the biosynthesis of cortisol and aldosterone in the adrenal cortex. We selected a number of functionally important 21OH amino acid substitutions, found in patients with congenital adrenal hyperplasia, to study their effects on the binding of 21OH autoantibodies (21OHAb) to 21OH. The ability of 21OHAb to bind in vitro transcribed and translated wild-type 21OH and five different 21OH mutant proteins was quantified by liquid-phase assays. Sera from 21OHAb-positive patients with idiopathic Addison's disease (n = 24), Graves' disease (n = 3), and insulin-dependent diabetes mellitus (n = 1) were used. While the P105L, delE196, and G291S mutations had no effect on autoantibody binding, the P453S mutation had a considerable effect, and the R483P mutation almost completely abolished binding. Synthetic peptides corresponding to linear epitopes defined by amino acids 447-461 and 477-491 were unable to compete with wild-type 21OH for binding to autoantibodies. Direct 21OH DNA sequencing could not reveal any specific genetic variation in alleles found in 21OHAb-positive patients. We conclude that the region involving R483 plays a key role in the formation of a three-dimensional epitope in a functionally important C-terminal domain of the enzyme.  相似文献   

4.
Astroviruses are important agents of pediatric gastroenteritis. To better understand astrovirus antigenic structure and the basis of protective immunity, monoclonal antibodies (MAbs) were produced against serotype 1 human astrovirus. Four MAbs were generated. One MAb (8G4) was nonneutralizing but reacted to all seven serotypes of astrovirus by enzyme-linked immunosorbentassay (ELISA) and immunoperoxidase staining of infected cells. Three MAbs were found to have potent neutralizing activity against astrovirus. The first (5B7) was serotype 1 specific, another (7C2) neutralized all seven human astrovirus serotypes, while the third (3B2) neutralized serotypes 1 and 7. Immunoprecipitation of radiolabeled astrovirus proteins from supernatants of astrovirus-infected cells showed that all three neutralizing antibodies reacted with VP29. MAb 5B7 also reacted strongly with VP26. A competition ELISA showed that all three neutralizing antibodies competed with each other for binding to purified astrovirus virions, suggesting that their epitopes were topographically in close proximity. None of the neutralizing MAbs competed with nonneutralizing MAb 8G4. The neutralizing MAbs were used to select antigenic variant astroviruses, which were then studied in neutralization assays. These assays also suggested a close relationship between the respective epitopes. All three neutralizing MAbs were able to prevent attachment of radiolabeled astrovirus particles to human Caco 2 intestinal cell monolayers. Taken together, these data suggest that the astrovirus capsid protein VP29 may be important in viral neutralization, heterotypic immunity, and virus attachment to target cells.  相似文献   

5.
Anti-idiotypic antibodies (anti-Ids) have been successfully used to characterize and isolate receptors of several cell ligands. To prepare an immunological probe for identification of cellular components interacting with the hepatitis B virus (HBV), polyclonal antisera against a panel of five HBV-specific monoclonal antibodies (MAbs) were produced in syngeneic BALB/c mice. MAbs to HBV used for immunization (Ab1) recognized biologically important and potentially neutralizing epitopes, located in the pre-S1, pre-S2, or S region-encoded domains of HBV proteins. All the anti-Ids (Ab2) were specific to idiotopes of the homologous Ab1 and inhibited their interaction with the corresponding viral epitopes, suggesting that they recognized unique determinants on the paratope of each immunizing Ab1. Therefore, all five generated polyclonal anti-Ids were of the Ab2 beta type and could represent internal images of viral epitopes. Ab2 raised against the pre-S2 region-specific MAb F124 bound to the extracellular matrix fibronectin of human liver sinusoids. Immunohistochemical studies demonstrated the attachment of viral and recombinant (S, M) hepatitis B surface antigen particles with the pre-S2 region-encoded epitopes to the fibronectin of human liver sinusoids. In contrast, recombinant (S, L*) hepatitis B surface antigen particles, in which the epitope recognized by F124 MAb was not expressed, did not show any binding capacity. These findings suggest that human liver fibronectin may bind HBV in vivo by the pre-S2 region-encoded epitopes in a species-restricted manner. Furthermore, binding of the circulating virus to liver sinusoids could facilitate its subsequent uptake by hepatocytes.  相似文献   

6.
Seven monoclonal antibodies (MAbs) directed against bovine respiratory syncytial virus (BRSV) fusion (F) protein were produced and characterized by radioimmunoprecipitation and immunofluorescence assays. These seven MAbs together with the previously described MAbs (Beeler and Van Wyke Coelingh, 1989) to the F protein of human respiratory syncytial virus (HRSV) were used to study the antigenic variation of 12 strains of ungulate RSV. All except one MAbs specific for the HRSV-F protein reacted with ungulate RSV strains less efficiently, indicating that some epitopes are conserved, and others are not conserved on the F proteins of HRSV and BRSV strains. Three MAbs specific to the BRSV-F protein neutralized virus infectivity and reacted with all the ungulate RSV strains, suggesting that these epitopes are well conserved. Based on the reactivity of three other MAbs specific to the BRSV-F protein, ungulate RSVs could be grouped into two subgroups. The results indicated that there are antigenic variations in the F protein among ungulate RSV strains.  相似文献   

7.
Four newly developed monoclonal antibodies (MAbs) are characterized using flowcytometry, enzyme-linked immunoadsorbent assay (ELISA), immunoprecipitation and Western blots, carbohydrate epitope mapping, glycosidase cleavage, and competition binding assays. Their effects on selectin binding to myeloid cells was tested. These MAbs react only with myeloid cells. MAbs CI-1, BU60, and HIM95 recognize epitopes expressed by CD11/CD18 (beta2) integrins, while HI247 and CSLEX1 do not. The epitopes require Lewis x [Galbeta1-4 (Fucalpha1-3)GlcNAc] based on reactivity with oligosaccharide-polyacrylamide-biotin or oligosaccharide-BSA conjugates. MAb HI247 recognizes a related structure, sialyl-Lewis x, NeuAcalpha2-3GaLbeta1-4(Fucalpha1-3)GlcNAc. The three MAbs against Lewis x show some minor differences in their reactivity such as recognizing their antigens on CD11/CD18 integrins after endo-beta-galactosidase treatment and recognizing free Lewis x. The hydroxyl group on C-3 of the terminal galactose is important for recognition by MAb CI-1, BU60, and HIM95 as its substitution with sulfo group of sialic acid abolishes the binding of these MAbs. The C-3 sialic acid is crucial for the binding of MAb HI247. Its replacement by sulphate or its cleavage by sialidase eliminates recognition by this MAb. MAbs HI247 and CSLEX-1 did not react in ELISA with immobilized CD11/CD18, suggesting that the majority of sialyl Lewis x on CD11/CD18 molecules may have sialic acid 6-linked rather than 3-linked to galactose. Unexpectedly, MAb BU60 inhibited binding of P-selectin mu chain chimera to HL-60 or U937 cells, while CI-1, HIM95 and three other defined anti-Lewis x MAbs (6C7, M6-1 and LeuM1) did not. MAb HI247 inhibited binding of both E- and P-selectin chimeras to these cell lines more effectively than several characterized MAbs (CSLEX-1, FH6, HECA-452) to sialyl Lewis x and related oligosaccharides. Certain combinations of these anticarbohydrate MAbs had additive inhibitory effects on selectin binding, suggesting a potential application of these new MAbs in cell adhesion/migration and tumor metastasis studies.  相似文献   

8.
This note describes the binding specificities of four lipid A monoclonal antibodies (MAbs) including Centoxin (HA-1A); these MAbs display similar binding properties. MAbs reacted with lipid A and heat-killed smooth bacteria, whereas no reactivity was observed with smooth lipopolysaccharide (LPS). Immunoblotting of bacterial extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the MAbs bound to many polypeptide bands including the molecular weight markers. Denaturation of bovine serum albumin (BSA) by boiling or dithiothreitol treatment unmasked antibody epitopes. In addition, binding both to a hydrophobic aliphatic C12 chain covalently coupled to BSA and to single-stranded DNA was observed. The polyreactivity of these clones is most likely mediated by a preferential reactivity with hydrophobic molecular patches.  相似文献   

9.
A majority of monoclonal antibodies (mAbs) raised against soluble oligomeric human immunodeficiency virus type 1 isolate IIIB (HIV-1IIIB) envelope (env) glycoprotein reacted with conformational epitopes within the gp120 or gp41 subunits. Of 35 mAbs directed against gp41, 21 preferentially reacted with oligomeric env. A subset of these mAbs reacted only with env oligomers (oligomer-specific mAbs). In contrast, only 1 of 27 mAbs directed against the gp120 subunit reacted more strongly with env oligomers than with monomers, and none were oligomer-specific. However, 50% of anti-gp120 mAbs preferentially recognized monomeric env, suggesting that some epitopes in gp120 are partially masked or altered by intersubunit contacts in the native env oligomer. Two mAbs to oligomer-dependent epitopes in gp41 neutralized HIV-1IIIB and HIV-1SF2, and binding of these mAbs to env was blocked by preincubation with HIV-1-positive human serum. Thus, immunization with soluble, oligomeric env elicits antibodies to conserved, conformational epitopes including a newly defined class of neutralizing antibodies that bind to oligomer-specific epitopes in gp41, and may also minimize the production of antibodies that preferentially react with monomeric env protein.  相似文献   

10.
Mucins are highly expressed in many different human cancers and numerous murine monoclonal antibodies (MAbs) to human mucins, particularly Mucin 1 (MUC1), have been produced. However, no such antibodies to murine mucin 1 (muc1) have been described and we now describe 6 different antibodies produced to murine muc1 and to human MUC1 cytoplasmic tail, either by immunising rats, or muc1 o/o mice with synthetic peptides or a fusion protein composed of glutathione-s-transferase (GST) linked to the tandem repeat region of muc1. The antibodies to both the extracellular tandem repeat region and to the cytoplasmic tail were found to react with mucin-containing murine tissues such as breast, stomach, colon, ovary, kidney and pancreas, and the staining patterns were similar to those found in humans. The reagents reacted specifically with muc1 peptides and tissues; however, some cross reactivity with other mucin-derived peptides was noted, particularly those containing the amino acid sequence TSS. Three different epitopes (TSS, TAVLSGTS and LSGTSSP) of the M30, M70 and MFP25 MAbs were detected. Of interest was the finding that some of the antibodies reacted with murine lymphocytes; it was not clear whether these reactions were due to mucin 1 on mouse lymphocytes (MUC1 was considered to be absent from human lymphocyte), or due to cross reaction with a sialic adhesion molecule on lymphocytes. The antibodies should prove valuable reagents when studying differentiation and expression in murine glandular tissues and the ontogeny of mucin-secreting tumours.  相似文献   

11.
A panel of 24 monoclonal antibodies (MAbs) was generated against human papillomavirus (HPV) types 16 and 18 L1 virus-like particles (VLPs). The MAbs were screened for reactivity to a variety of VLPs prepared from HPV-6, -11, -16, -18, -31, -33, -35, and -45, cottontail rabbit papillomavirus, bovine papillomavirus type 1, and a set of 35 overlapping 20-amino-acid peptides spanning the entire HPV-16 L1 gene. Type-specific linear and conformational surface epitopes were detected as well as several cross-reactive linear epitopes that showed various levels of cross-reactivity between different genital HPV and animal papillomavirus L1s. Most of the linear epitopes were mapped using synthetic peptides, and the epitopes were identified as being either surface or buried within the VLP as defined by the pattern of reactivity in ELISA using intact and disrupted VLP antigen. These MAbs may be useful reagents to help define neutralizing epitopes of HPV-16 and -18 when infectivity assays become available, and to define the regions of L1 that are exposed on the surface or buried within the assembled capsid.  相似文献   

12.
Three novel monoclonal antibodies (MAbs) were established against a recombinant hepatitis C virus (HCV) core protein derived from cloned genotype 1b HCV cDNA. MAbs C7-50 and C8-59 recognize a conserved linear epitope represented by amino acid residues 21 to 40 of the nucleocapsid protein. MAb C8-48 is directed against a strain-specific conformational epitope located within the first 82 amino acids. A sensitive two-site MAb-based immunoradiometric assay was established using antibodies directed against distinct epitopes on the nucleocapsid protein. Processed 21 kDa core protein was detected by immunoblotting in human hepatocellular carcinoma cell lines and primary adult rat hepatocytes transfected with a cytomegalovirus promoter-driven expression construct. Immunofluorescence microscopy studies revealed a granular and vesicular cytoplasmic staining pattern. MAb C7-50 was used successfully to detect HCV core antigen in chronically infected chimpanzee liver tissue. These MAbs represent important reagents for the study of HCV biology and for the development of immunodiagnostic assays.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) catalyzes the integration of viral DNA into the host chromosome, an essential step in retroviral replication. As a tool to study the structure and function of this enzyme, monoclonal antibodies (MAbs) against HIV-1 IN were produced. Epitope mapping demonstrated that the 17 MAbs obtained could be divided into seven different groups, and the selection of MAbs representing these groups were tested for their effect on in vitro activities of IN. Four groups of MAbs recognized epitopes within the region of amino acids (aa) 1 to 16, 17 to 38, or 42 to 55 in and around the conserved HHCC motif near the N terminus of IN. MAbs binding to these epitopes inhibited end processing and DNA joining and either stimulated or had little effect on disintegration and reintegration activities of IN. Two MAbs binding to epitopes within the region of aa 56 to 102 in the central core or aa 186 to 250 in the C-terminal half of the protein showed only minor effects on the in vitro activities of IN. Three Mabs which recognized on epitope within the region of aa262 to 271 of HIV-1 IN cross-reacted with HIV-2 IN. MAbs binding to this epitope clearly inhibited end processing and DNA joining and stimulated or had little effect on disintegration. In contrast to the N-terminal-specific MAbs, these C-terminal-specific MAbs abolished reintegration activity of IN.  相似文献   

14.
Infections caused by human parvovirus B19 are known to be controlled mainly by neutralizing antibodies. To analyze the immune reaction against parvovirus B19 proteins, four cell lines secreting human immunoglobulin G monoclonal antibodies (MAbs) were generated from two healthy donors and one human immunodeficiency virus type 1-seropositive individual with high serum titers against parvovirus. One MAb is specific for nonstructural protein NS1 (MAb 1424), two MAbs are specific for the unique region of minor capsid protein VP1 (MAbs 1418-1 and 1418-16), and one MAb is directed to major capsid protein VP2 (MAb 860-55D). Two MAbs, 1418-1 and 1418-16, which were generated from the same individual have identity in the cDNA sequences encoding the variable domains, with the exception of four base pairs resulting in only one amino acid change in the light chain. The NS1- and VP1-specific MAbs interact with linear epitopes, whereas the recognized epitope in VP2 is conformational. The MAbs specific for the structural proteins display strong virus-neutralizing activity. The VP1- and VP2-specific MAbs have the capacity to neutralize 50% of infectious parvovirus B19 in vitro at 0.08 and 0.73 microgram/ml, respectively, demonstrating the importance of such antibodies in the clearance of B19 viremia. The NS1-specific MAb mediated weak neutralizing activity and required 47.7 micrograms/ml for 50% neutralization. The human MAbs with potent neutralizing activity could be used for immunotherapy of chronically B19 virus-infected individuals and acutely infected pregnant women. Furthermore, the knowledge gained regarding epitopes which induce strongly neutralizing antibodies may be important for vaccine development.  相似文献   

15.
Enzyme immunoassay (EIA) with sixty types of monoclonal antibodies (MAbs) was used to study cross-reactive epitopes on the attenuated and virulent strains of the Eastern equine encephalomyelitis (EEE) and Venezuelan equine encephalomyelitis (VEE) viruses. All three structural proteins of the EEE and VEE viruses were demonstrated to have both cross-reactive and specific antigenic determinants. The glycoprotein E1 of EEE and VEE viruses possesses three cross-reactive epitopes for binding to MAbs. The glycoprotein E2 has a cluster of epitopes for 20 cross-reacting MAbs produced to EEE and VEE viruses. Cross-reactive epitopes were localised within five different sites of glycoprotein E2 of VEE virus and within four sites of that of the EEE virus. There are no cross-neutralising MAbs to the VEE and EEE viruses. Only one type of the protective Mabs was able to cross-protect mice against lethal infection by the virulent strains of the VEE and EEE viruses. Eight MAbs blocked the hemagglutination activity (HA) of both viruses. Antigenic alterations of neutralising and protective sites were revealed for all attenuated strains of the VEE and EEE viruses. Comparative studies of the E2 proteins amino acid sequences show that the antigenic modifications observed with the attenuated strains of the VEE virus may be caused by multiple amino acid changes in positions 7, 62, 120, 192 and 209-213. The escape-variants of the VEE virus obtained with cross-reactive MAbs 7D1, 2D4 and 7A6 have mutations of the E2 protein at positions 59, 212-213 and 232, respectively. Amino acid sequences in these regions of the VEE and EEE viruses are not homologous. These observations indicate that cross-reactive MAbs are capable of recognising discontinuous epitopes on the E2 glycoprotein.  相似文献   

16.
The purpose of this study was to determine whether the two monoclonal anti-cardiac troponin T (cTnT) antibodies (MAbs) used in the second generation cTnT assay by Boehringer Mannheim (BM, capture Ab, M11.7; detection Ab, M7) would detect cTnT isoforms expressed in human skeletal muscle in response to chronic renal disease (CRD). cTnT expression was examined in skeletal muscle biopsies obtained from 45 CRD patients, as well as nondiseased human heart (n = 3) and skeletal muscle (n = 3). cTnT proteins were resolved by modified 7.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and probed with the following anti-cTnT MAbs: M11.7; M7; JS-2, Lakeland Biomedical; and 13-11, Duke University. All four antibodies detected the cTnT isoforms (Ta, Te) expressed in human myocardium. In 20 of 45 skeletal muscle biopsies, MAb M11.7 recognized its epitope in one to three proteins, molecular mass 34-36 kDa, designated Te, Td, and Tc; the strongest signal was that of Te. The same proteins were recognized by MAbs JS-2 and 13-11. The BM M7 antibody did not detect the cTnT isoforms in the molecular mass range of 34-36 kDa. However, MAb M7 did detect a cTnT isoform, molecular mass 39 kDa, in 2 of 45 biopsies. This isoform had an electrophoretic mobility similar to the predominant heart cTnT isoform, Ta. We conclude that cTnT isoforms are expressed in the skeletal muscle of CRD patients. However, given the epitopes recognized by the BM MAbs M7 and M11.7 and the variable presence of these cTnT isoforms in skeletal muscle, the second generation BM cTnT assay will not detect these isoforms if they are released from skeletal muscle into the circulation.  相似文献   

17.
Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism.  相似文献   

18.
The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR- cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4- sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4- HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions.  相似文献   

19.
Two groups of monoclonal antibodies (MAbs) specific to human cardiac troponin I (cTnI) were generated by immunization of mice by isolated cTnI (group I, 16 MAbs) or by the whole troponin complex (group II, 15 MAbs). Two sets of overlapping decapeptides covering the complete sequence of cTnI were prepared and used for epitope mapping by SPOT technique. Majority of MAbs (28 out of 31) interacts with synthetic peptides thus indicating that they recognize liner epitopes. MAbs raised against isolated cTnI preferentially recognize epitopes located at the N- or C-terminal ends of cTnI. Nine out of fifteen MAbs raised against whole troponin complex interact with epitopes located in the N-terminal part of cTnI. Generation of MAbs recognizing both isolated cTnI and cTnI inside of troponin complex and mapping their epitopes provides reliable detection of TnI in serum of patients with acute myocardial infarction.  相似文献   

20.
A panel of 14 human IgG monoclonal antibodies (MAbs) specific for envelope antigens of the human immunodeficiency virus type 1 (HIV-1), 2 high-titer human anti-HIV-1 immunoglobulin (HIVIG) preparations, and 15 combinations of MAbs or MAb/HIVIG were tested for their ability to neutralize infection of cultured human T cells (MT-2) with a chimeric simian immunodeficiency virus (SHIV-vpu+), which expressed HIV-1 IIIB envelope antigens. Eleven MAbs and both HIVIGs were neutralizing. When used alone, the anti-CD4-binding site MAb b12, the anti-gp41 MAb 2F5, and the anti-gp120 MAb 2G12 were the most potent. When combination regimens involving two MAbs targeting different epitopes were tested, synergy was seen in all paired MAbs, except for one combination that revealed additive effects. The lowest effective antibody concentration for 50% viral neutralization (EC50) and EC90 were achieved with combinations of MAbs b12, 2F5, 2G12, and the anti-V3 MAb 694/98D. Depending on the combination regimen, the concentration of MAbs required to reach 90% virus neutralization was reduced approximately 2- to 25-fold as compared to the dose requirement of individual MAbs to produce the same effect. Synergy of the combination regimens implies that combinations of antibodies may have a role in passive immunoprophylaxis against HIV-1. The ability of SHIV to replicate in rhesus macaques will allow us to test such approaches in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号