首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
溶胶-凝胶原位合成宽活性温度V2O5/TiO2脱硝催化剂   总被引:1,自引:0,他引:1       下载免费PDF全文
郭凤  余剑  初茉  许光文 《化工学报》2014,65(6):2098-2105
利用溶胶-凝胶技术原位合成一系列不同V2O5担载量的V2O5/TiO2催化剂,通过BET、XRD、NH3-TPD及紫外-可见光等手段对催化剂进行表征。结果表明:制备的催化剂均具有介孔结构,V2O5在TiO2表面高度分散,且存在3种典型的酸性位。通过选择性催化还原反应对V2O5/TiO2催化剂进行活性评价,结果显示随着V2O5含量的增加,NO转化率大于75%的温度窗口向低温方向偏移,含10% (质量分数)V2O5的催化剂的NO转化率为80%的温度窗口最宽为200~450℃,240℃时20 h连续实验表现出稳定的抗硫抗水性能。结合紫外-可见光谱分析,揭示了钒掺杂所形成的单聚和低聚钒酸盐为催化剂的活性组分。  相似文献   

2.
采用浸渍法制备了系列 Cu2O-V2O5-MoO3/TiO2催化剂,通过固定床反应器考察了不同 Cu2O 负载量对V2O5-MoO3/TiO2催化剂脱硝协同单质汞(Hg0)氧化性能的影响。结果表明,2% Cu2O 的引入提高了催化剂的脱硝协同汞氧化性能。采用 BET 和 XRD 对催化剂进行分析,证实 Cu2O-V2O5-MoO3/TiO2催化剂良好的催化活性与其均匀分散的活性组分有关,与孔道结构没有明显的相关性。  相似文献   

3.
采用等体积浸渍的方法制备V2O5-CeO2/TiO2催化剂,考查了V2O5/CeO2比、负载顺序、焙烧温度、反应空速对催化剂协同脱硝脱二噁英性能的影响。结果表明,所制备的催化剂活性组分在载体表面分散均匀。采用共同浸渍法制备,V2O5/CeO2质量比为1∶3,焙烧温度为550℃的催化剂协同脱硝脱二氯苯性能最佳,在200℃反应温度下脱硝率为93%,二氯苯的脱除率达到90%。  相似文献   

4.
V2O5-MoO3/TiO2 催化剂的NOx选择性催化还原及SO2氧化活性   总被引:2,自引:0,他引:2  
采用浸渍法以TiO2为载体制备V2O5-MoO3/TiO2 选择性催化还原催化剂,研究V2O5和MoO3负载量对于催化剂选择性催化还原反应及SO2氧化活性的影响,并考察氧含量、氨氮物质的量比和反应空速对3%V2O5-6%MoO3/TiO2催化剂选择性催化还原脱硝活性的影响。结果表明,随着催化剂中V2O5负载质量分数增加,V2O5-MoO3/TiO2 催化剂的选择性催化还原活性和SO2氧化活性均呈上升趋势。MoO3的负载对催化剂的SO2氧化活性有明显抑制作用。MoO3负载质量分数超过9%,制备的催化剂既保持较高的低温选择性催化还原活性,又使选择性催化还原反应中的SO2转化率小于1%。  相似文献   

5.
以钙系生料釉为基础,引入结晶剂CuO、MnO2制备无铅CuO-MnO2系金属光泽釉;结合XRD、SEM-EDS进行物相组成定性分析和显微结构表征,系统探究外加TiO2、V2O5以及玻璃粉对金属光泽釉釉面分相的影响。研究表明:一定量的TiO2、V2O5引入能有效促进釉面的分相,将玻璃粉部分替换基础釉中的钾长石能使得釉熔体的高温粘度降低,并进一步加剧釉面分相,促进CuMn2O4铜锰尖晶石在釉层表面的析出和富集;当TiO2引入量为2%,V2O5引入量为1%,玻璃粉引入量为25%(同为质量分数)时,金属光泽釉釉面效果最佳。  相似文献   

6.
碱金属化合物对V2O5/AC催化剂低温脱硝的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
韩斌  雷志刚  刘茜  陈标华 《化工学报》2013,64(8):2867-2874
研究了碱金属化合物(K2SO4)对活性炭(AC)担载五氧化二钒(V2O5)组成的V2O5/AC催化剂的低温脱硝活性的影响。发现在V2O5/AC催化剂表面负载碱金属化合物(K2SO4)后其脱硝活性大大降低。用等体积浸渍法制备了V2O5/AC催化剂和Kx-V2/AC(x=0.5,1,2)催化剂。采用5种模型对动力学实验数据进行关联。结果显示,无论V2O5/AC催化剂是否负载K2SO4,Eley-Rideal模型均比其他模型可更好地描述SCR脱硝反应,碱金属化合物(K2SO4)的存在提高了反应活化能,但并不改变反应机理。  相似文献   

7.
采用水热法制备了ZnFe2O4纳米粒子,在碱性条件下水解钛酸丁酯组装得到ZnFe2O4/TiO2纳米棒光催化剂,利用X-射线衍射仪(XRD)、扫描电镜(SEM)、振动样品磁强计(VSM)、N2吸附-脱附仪及电化学工作站分别表征了ZnFe2O4/TiO2纳米棒的晶型、形貌、磁性能、孔结构及电极性能,并研究了其对甲基橙废水的脱色效果。结果表明,ZnFe2O4具有尖晶石结构,而TiO2是锐钛矿结构,二者组装为具有介孔结构的ZnFe2O4/TiO2纳米棒光催化剂,比饱和磁化强度高达40.0 emu·g-1;紫外光照射120 min后,ZnFe2O4/TiO2纳米棒对甲基橙废水的脱色率...  相似文献   

8.
以钛酸丁酯为前驱体,采用溶胶-凝胶法制备Ce掺杂纳米TiO2。结合XRD、TEM、UV-Vis等现代检测手段对所制备样品的结构和性能进行表征。以直接桃红12B为目标降解产物,考察了所制备样品的光催化活性。研究结果表明:样品在550℃煅烧后,TiO2为锐钛矿型,Ce掺杂纳米TiO2后晶粒尺寸由23.9 nm降低到19.8 nm。Ce掺杂引起TiO2的光学吸收边红移,提高可见光的吸收,拓展了TiO2光谱响应范围。催化剂投加量为0.5 g/L,直接桃红12B溶液的初始浓度为20 mg/L,p H值为5。在紫外光下2 h条件下,Ce掺杂TiO2后去除率由83.6%提高到93.8%。低浓度下的光催化降解过程可用Langmuir-Hinshelwood一级动力学方程拟合,初始浓度20 mg/L时,吸附速率可达到0.063 04 min-1。  相似文献   

9.
将A5微孔分子筛浸渍于偏钒酸铵溶液,过滤,120 ℃干燥2 h,550 ℃焙烧6 h,制备了含有V2O5的A5微孔分子筛催化剂。采用X射线衍射、N2吸附-脱附和扫描电镜等进行表征,并将其用于以H2O2为氧化剂、乙酸酐为溶剂的对硝基甲苯催化氧化生成对硝基苯甲醇的反应。在反应温度40 ℃和反应时间4 h条件下,以质量分数35%的H2O2为氧化剂和V2O5质量分数8.5%的V2O5/A5为催化剂,能够获得较好的对硝基甲苯转化率(35.54%)和较高的对硝基苯甲醇选择性(67.16%)。反应结束后,在母液中通过电感耦合等离子体原子光谱仪没有检测到V2O5。V2O5/A5催化剂连续使用3次,对硝基甲苯转化率为34.21%,对硝基苯甲醇选择性为63.39%,催化剂活性无明显降低。  相似文献   

10.
以含有CTAB的V2O5溶胶为电解液,采用电沉积法在不锈钢基体上沉积V2O5薄膜前体,经300℃烧结处理后制备了无黏结剂和导电剂的V2O5纳米薄膜电极。XRD测试表明该方法制备的V2O5薄膜是含水相的V2O5·nH2O,与未添加CTAB制备的薄膜相比,其层间距明显变大。FESEM和AFM测试发现CTAB辅助电沉积制备的V2O5薄膜具有粗糙多孔的表面形貌;XPS测试表明CTAB辅助电沉积制备的V2O5薄膜中含有更多的低价钒离子(V4+)。电化学测试发现该方法制备的V2O5薄膜具有优异的嵌/脱Na+循环稳定性;与未添加CTAB制备的薄膜相比,CTAB辅助电沉积制备的V2O5薄膜具有更好的电化学反应可逆性、更强Na+扩散性能和更高的储钠比容量,是一种非常有应用前景的钠离子电池正极材料。  相似文献   

11.
Gas-phase elemental mercury capture by a V2O5/AC catalyst   总被引:3,自引:0,他引:3  
Gas-phase elemental mercury (Hg0) capture by an activated coke (AC) supported V2O5 (V2O5/AC) catalyst was studied in simulated flue gas and compared with that by the AC. The study on the influences of V2O5 loading, temperature, capture time and flue gas components (O2, SO2, H2O and N2) shows that the Hg0 capture capability of V2O5/AC is much higher than that of AC. It increases with an increase in V2O5 loading and is promoted by O2, which indicates the important role of V2O5 in Hg0 oxidation and capture; it is promoted slightly by SO2 but inhibited by H2O; it increases with an increase in temperature up to 150 °C when Hg desorption starts. X-ray photoelectron spectroscopy analysis and sequential chemical extraction experiments indicate that the main states of Hg captured on V2O5/AC are HgO and HgSO4. Temperature programmed desorption experiments were also made to understand the stability of the Hg captured.  相似文献   

12.
V2O5 was loaded on the surface of C-doped TiO2 (C-TiO2) by incipient wetness impregnation in order to enhance the visible light photocatalytic performance. The physicochemical properties of the C-TiO2/V2O5 composite were characterized by XRD, Raman, TEM, XPS, UV–vis diffuse reflectance spectra, and PL in detail. The result indicated that a heterojunction between C-TiO2 and V2O5 was formed and the separation of excited electron–hole pairs on C-TiO2/V2O5 is greatly promoted. Thus, this composite photocatalyst exhibited enhanced visible light photocatalytic activity in degradation of gas-phase toluene compared with the pristine C-TiO2.  相似文献   

13.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

14.
The present study was undertaken to investigate the influence of ceria on the physicochemical and catalytic properties of V2O5/TiO2–ZrO2 for oxidative dehydrogenation of ethylbenzene to styrene utilizing CO2 as a soft oxidant. Monolayer equivalents of ceria, vanadia and ceria–vanadia combination over TiO2–ZrO2 (TZ) support were impregnated by a coprecipitation and wet impregnation methods. Synthesized catalysts were characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature programmed reduction, transmission electron microscopy and BET surface area methods. The XRD profiles of 550 °C calcined samples revealed amorphous nature of the materials. Upon increasing calcination temperature to 750 °C, in addition to ZrTiO4 peaks, few other lines due to ZrV2O7 and CeVO4 were observed. The XPS V 2p results revealed the existence of V4+ and V5+ species at 550 and 750 °C calcinations temperatures, respectively. TEM analysis suggested the presence of nanosized (<7 nm) particles with narrow range distribution. Raman measurements confirmed the formation ZrTiO4 under high temperature treatments. TPR measurements suggested a facile reduction of CeO2–V2O5/TZ sample. Among various samples evaluated, the CeO2–V2O5/TZ sample exhibited highest conversion and nearly 100% product selectivity. In particular, the addition of ceria to V2O5/TZ suppressed the coke deposition and allowed a stable and high catalytic activity.  相似文献   

15.
Supporting V2O5 onto an activated coke (AC) has been reported to significantly increase the AC's activity in simultaneous SO2 and NO removal from flue gas. To understand the role of V2O5 on SO2 removal, V2O5/AC is studied through SO2 removal reaction, surface analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) techniques. It is found that the main role of V2O5 in SO2 removal over V2O5/AC is to catalyze SO2 oxidation through a VOSO4-like intermediate species, which reacts with O2 to form SO3 and V2O5. The SO3 formed transfers from the V sites to AC sites and then reacts with H2O to form H2SO4. At low V2O5 loadings, a V atom is able to catalyze as many as 8 SO2 molecules to SO3. At high V2O5 loadings, however, the number of SO2 molecules catalyzed by a V atom is much less, due possibly to excessive amounts of V2O5 sites in comparison to the pores available for SO3 and H2SO4 storage.  相似文献   

16.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

17.
Electrical conductivity measurements on EUROCAT V2O5–WO3/TiO2 catalyst and on its precursor without vanadia were performed at 300°C under pure oxygen to characterize the samples, under NO and under NH3 to determine the mode of reactivity of these reactants and under two reaction mixtures ((i) 2000 ppm NO + 2000 ppm NH3 without O2, and (ii) 2000 ppm NO + 2000 ppm NH3 + 500 ppm O2) to put in evidence redox processes in SCR deNOx reaction.It was first demonstrated that titania support contains certain amounts of dissolved W6+ and V5+ ions, whose dissolution in the lattice of titania creates an n-type doping effect. Electrical conductivity revealed that the so-called reference pure titania monolith was highly doped by heterovalent cations whose valency was higher than +4. Subsequent chemical analyses revealed that so-called pure titania reference catalyst was actually the WO3/TiO2 precursor of V2O5–WO3/TiO2 EUROCAT catalyst. It contained an average amount of 0.37 at.% W6+dissolved in titania, i.e. 1.07 × 1020 W6+ cations dissolved/cm3 of titania. For the fresh catalyst, the mean amounts of W6+ and V5+ ions dissolved in titania were found to be equal to 1.07 × 1020 and 4.47 × 1020 cm−3, respectively. For the used catalyst, the mean amounts of W6+ and V5+ ions dissolved were found to be equal to 1.07 × 1020 and 7.42 × 1020 cm−3, respectively. Since fresh and used catalysts have similar compositions and similar catalytic behaviours, the only manifestation of ageing was a supplementary progressive dissolution of 2.9 × 1020 additional V5+ cations in titania.After a prompt removal of oxygen, it appeared that NO alone has an electron acceptor character, linked to its possible ionosorption as NO and to the filling of anionic vacancies, mostly present on vanadia. Ammonia had a strong reducing behaviour with the formation of singly ionized vacancies. A subsequent introduction of NO indicated a donor character of this molecule, in opposition to its first adsorption. This was ascribed to its reaction with previously adsorbed ammonia strongly bound to acidic sites. Under NO + NH3 reaction mixture in the absence of oxygen, the increase of electrical conductivity was ascribed to the formation of anionic vacancies, mainly on vanadia, created by dehydroxylation and dehydration of the surface. These anionic vacancies were initially subsequently filled by the oxygen atom of NO. No atoms, resulting from the dissociation of NO and from ammonia dehydrogenation, recombined into dinitrogen molecules. The reaction corresponded to
. In the presence of oxygen, NO did not exhibit anymore its electron acceptor character, since the filling of anionic vacancies was performed by oxygen from the gas phase. NO reacted directly with ammonia strongly bound on acidic sites. A tentative redox mechanism was proposed for both cases.  相似文献   

18.
采用空间限域法制备了单层三氧化钨纳米片(ML-WO3),然后将其与TiO2复合得到ML-WO3/TiO2纳米材料,被用来在模拟太阳光下对罗丹明B进行光催化降解。ML-WO3/TiO2的组成和光学特性通过扫描电镜、透射电镜、高分辨透射电镜、X射线衍射、紫外-可见吸收光谱和光致发光光谱手段进行表征。结果证实,纳米ML-WO3/TiO2克服了纯TiO2带隙较大的缺陷,在全波段太阳光表现出比ML-WO3和TiO2更强的吸收性能,ML-WO3与TiO2之间具有明显的协同效应。活性物种捕获实验表明.OH和.O2-自由基是RhB降解的主要活性物种。ML-WO3和TiO2之间构建的Z型异质结电荷转移路径能够保证光生载流子的高效分离和重组。在5次循环实验后ML-WO3/TiO2的光催化活性仍能接近80%,具有良好的光化学稳定性。通过高效液相色谱-质谱检测RhB的中间产物,推测了RhB可能的降解路径。  相似文献   

19.
C-doped and C- and V-doped TiO2 photocatalysts were prepared by a sol–gel process. Both catalysts showed high activity for the degradation of acetaldehyde under visible irradiation (>420 nm). The co-doped TiO2 catalysts also were highly active in the dark; 2.0% V-containing co-doped TiO2 had the highest activity, comparable with the activity under visible light irradiation. The catalysts were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), and N2 adsorption–desorption. The results suggest that vanadium ions were introduced both on the surface and into the bulk of TiO2. A free electron, induced by the formation of V5+ in the sublayers of TiO2 during calcination at 500 °C in air, was delocalized and promoted into the conduction band by thermal energy and further transferred to O2, generating a superoxide radical anion (O2) that is responsible for degradation of acetaldehyde in the dark. In addition to functioning as a photosensitizer that shifts the optical response of TiO2 from the ultraviolet (UV) to the visible light region, the doped elemental carbon increased the surface area and improved the dispersion of vanadium.  相似文献   

20.
Three model catalysts (Pt/Al2O3, Pt/TiO2, Pt/V2O5/TiO2) were examined in regard to their NO2 formation ability under a changing lean gas composition. The results show that the NO to NO2 oxidation function as well as the NO x reduction under lean gas conditions is affected by a change in the lean gas atmosphere. The NO oxidation activity also decreased with time, for Pt/Al2O3 and Pt/TiO2, and a possible explanation may be platinum oxide formation. This deactivation was not observed for Pt/V2O5/TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号