共查询到17条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
分别对以离子液体1-乙基-3-甲基咪唑磷酸二乙酯[Emim][DEP]为吸收剂的二元工质对[Emim][DEP]+H2O和以[Emim][DEP]+LiBr为吸收剂的三元工质对LiBr+[Emim][DEP]+H2O的吸收制冷循环性能进行了实验研究,用于评价这种新型的工质对的制冷性能。实验结果表明,二元工质对[Emim][DEP]+H2O具有吸收制冷性能,但与LiBr+H2O工质对相比,其制冷系数较低。当发生温度为90℃、循环水温度为30℃、蒸发温度在10~15℃时,制冷系数仅为0.16~0.28。主要原因是[Emim][DEP]+H2O工质对具有较高的黏度和较低的热导率,导致吸收器降膜吸收传热系数较低,吸收器吸收水蒸气的能力不足。为了强化其制冷效果,在[Emim][DEP]+H2O工质溶液中加入少量LiBr水溶液,构成三元工质对LiBr+[Emim][DEP]+H2O。实验结果表明,三元工质对LiBr+[Emim][DEP]+H2O的制冷性能优于二元工质对[Emim[DEP]+H2O,在上述蒸发温度范围内,制冷系数能够达到0.17~ 0.34,并且制冷温度更低。 相似文献
5.
6.
吸收式蓄能技术具有蓄能密度高、热损失小等特点,是一种具有发展潜力的蓄能技术,但目前的技术尚存在吸收效果差、效率不高等问题。提出基于增压吸收的吸收式蓄能方法,并阐述其装置的工作原理和特点,通过数学模型研究在不同工况下增压对其热力学性能的影响规律。结果表明:当蒸发温度与发生温度越低、冷凝温度越高时,增压器改善吸收式蓄能循环的性能系数(COP)越明显;与无增压吸收式蓄能循环相比,蓄能密度(ESD)得到提高,当增压比为3时,其ESD可提高30%~295%。 相似文献
7.
提出了以低温余热为驱动热源的氨吸收,压缩联合制冷循环过程,根据schulz所建立的氨水溶液的热力学性质方程,对此循环过程的热力性能进行了模拟计算.分析考察了蒸发温度、压缩比、放气范围等参量对系统的制冷系数,发生温度和循环倍率的影响规律.结果表明,与单级氨吸收制冷相比,在同样的蒸发温度下,氨吸收/压缩联合制冷循环过程可以显著降低热源温度,为有效利用低温位余热进行制冷提供了一种有效的方法. 相似文献
8.
9.
10.
我厂是一个以碳化煤球为主要原料、年产2万吨合成氨的小型氮肥厂。由于冷却条件的限制,造成氨水温度达55~60℃,处于过饱和状态,结果有大量的气氨从浓氨水贮槽顶盖的放空管挥发到环境中。为了美化操作环境、提高氨利用率,我们根据本厂实际情况,采用自动喷射吸收技术,用稀氨水贮槽中的4mol/L的稀氨水吸收浓氨水贮槽和母液 相似文献
11.
12.
13.
通过试验研究了使用氨-水-溴化锂三元工质对氨吸收式制冷性能的影响。根据现有研究,工质中溴化锂的质量分数设定为5%、10%、15%和20%,试验中发生温度设定为90~130℃,蒸发温度设定为-19~-4℃,冷却水温度设定为22~33℃。通过试验发现,溴化锂质量分数在15%时对COP提升效果最好,发生温度在130℃时性能系数可以达到0.408,蒸发温度在-4℃时性能系数可达0.410,冷却水温度在22℃时性能系数可以达到0.412;而且添加三元工质可以减小精馏能耗且充分利用低品位热能,因此采用氨-水-溴化锂三元工质可以在高效利用热能情况下改善氨吸收式制冷系统的劣势。 相似文献
14.
利用低品位的太阳能热、地热或者工业领域低温余热废热进行吸收式制冷是实现节能减排的一个有效途径。对具有良好制冷吸收特性的工质对CaCl2-LiCl/H2O进行了实验研究,通过测定不同质量比的CaCl2-LiCl/H2O溶液的饱和蒸气压,得出了CaCl2与LiCl的质量比为2∶1的工质对即CaCl2-LiCl(2∶1)/H2O的制冷吸收特性最佳。CaCl2-LiCl(2∶1)/H2O与常规的工质对LiBr/H2O相比,在大幅降低工质对成本的同时,在同一制冷工况下所需驱动热源温度即发生温度降低了5.8℃,而制冷COP提高0.041,?效率提高0.052。还系统测定了CaCl2-LiCl(2∶1)/H2O的结晶温度、密度、黏度、比热容、比焓以及腐蚀性。结果表明,相较于其他几种以CaCl2为主要成分的工质对,CaCl2-LiCl(2∶1)/H2O具有较低的黏性,且对碳钢和紫铜的腐蚀性也较小,可满足实际工程应用的要求。 相似文献
15.
针对传统的溴化锂吸收式制冷系统难以利用低品位热源的问题,将气隙式膜蒸馏(AGMD)技术引入到溴化锂吸收式制冷系统中,是使其能够利用低品位热源的一种新的工艺流程。本文根据已有的1H,1H,2H,2H-全氟癸基三乙氧基硅烷(FAS)-Al2O3管式复合膜的膜蒸馏性能数据,对典型的基于AGMD的溴化锂吸收式制冷系统进行了热力计算。结果发现制冷系统的性能系数(COP)值较小,仅为0.280,因而需要对其工艺流程作进一步的优化。经热力学分析确定了优化的方案:在膜发生器浓溶液出口处增加回路,从而改进了原制冷系统的工艺流程。研究结果表明,制冷系统的COP值会随着回流比的增大而增大。当回流比达到8时,COP值可达到0.765,相较于改进前的系统增大了1.74倍,大大改善了制冷系统的性能。 相似文献
16.
采用全新工艺流程,设计了一种新型双效气液并流吸收塔,塔内安装有改进型立体旋液式塔板。分别以空气、空气-水作为研究体系进行实验,考察了不同操作参数与塔板结构参数下双效气液并流吸收塔的干塔压降、湿塔压降以及立体旋液式塔板的干板压降、湿板压降,明确了双效气液并流吸收塔的操作参数范围。实验结果表明:立体旋液式塔板单板干板压降及湿板压降分别控制在70 Pa,180 Pa以内。在一效、二效各逆向安装3块塔板,全塔共完全安装6块塔板时,全塔压降最大,但是干塔压降及湿塔压降可分别控制在2 400 Pa,2 800 Pa以内,双效气液并流吸收塔与立体旋液式式塔板的组合在能耗及操作弹性方面优势明显。 相似文献
17.
对R717循环辅助过冷、R744主循环制冷压缩机排出的气体与R744过冷液直接接触冷凝的R717/R744-DCC制冷循环的热力性能进行分析,得出:R717/R744-DCC直接接触冷凝制冷循环存在最佳的R744主循环冷凝温度,并获得最优的性能系数和最低的R717冷凝器散热量。R744主循环过冷液体的过冷度增大,最优的性能系数降低,最低R717冷凝器散热量增大,对应的R744主循环冷凝温度升高,R744蒸发器的质量流量减少。与常规R717/R744复叠式制冷循环的热力性能比较,在相同的运行工况和最佳R744主循环冷凝温度下,R717/R744-DCC直接接触冷凝制冷循环最优性能系数提高了5.2%,最低R717冷凝器散热量减少了1.6%。R744主循环冷凝温度在-10~8℃范围内,R717/R744-DCC直接接触冷凝制冷循环R744蒸发器的制冷剂质量流量减少了1.75%~2.61%,R717冷凝器的制冷剂流量减少了0.51%~0.82%。 相似文献