首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal shock resistance of Si2N2O–Si3N4 composites was evaluated by water quenching and subsequent three-point bending tests of strength diminution. Si2N2O–Si3N4 composites which was prepared with in situ liquid pressureless sintering process using Yb2O3 and Al2O3 powders as sintering additives by gelcasting showed no macroscopic cracks and the critical temperature difference (ΔTc) could be up to 1400 °C. A mass of pores existed in the sintered body and the irregular shaped fibers extended from the pores increased the thermal shock property.  相似文献   

2.
This study addresses itself in the performance of Si3N4 combustion synthesis, occurred in the presence of Si3N4 and NH4Cl powders in N2 atmosphere of 6 MPa. Mechanochemical activation of Si powder, achieved via high-energy attrition milling up to 24 h, increases the intensity and the efficiency of the reactions between Si and N2 as well as combustion temperature. Benign processing conditions, anticipated with lower mechanochemical activation of Si powder, low N2 pressures, and low combustion temperatures, favor formation of α-Si3N4.  相似文献   

3.
Porous sintered reaction-bonded silicon nitrides (SRBSNs) with comparable permeability to SiC were fabricated using presintered Si-additive mixture granules. By increasing the granule strength through the adjustment of the presintering conditions, the strengthened sturdiness of the granules led to an increase in the pore channel size. Porous SRBSNs with ≥60% porosity were achieved without employing a pore former due to the formation of intragranular narrow pore channels as well as intergranular wide pore channels. As the specific pore area of the developed SRBSN is nearly 26 times that of SiC with similar permeability, superior filtering efficiency for nano-sized particulate matter is expected.  相似文献   

4.
Amorphous TiO2, prepared at room temperature through a sol–gel method implementing hydrolysis of TiCl4, has been supported on graphite rods and then annealed at 673 K. In this way graphite was completely covered by a porous anatase TiO2 layer, with an external thickness of about 1 μm, with graphite pores completely filled by the semiconductor particles. The obtained electrode was structurally characterized by SEM microscopy coupled to EDAX mapping and by Raman spectroscopy. A Pyrex annular reactor was designed in order to test the prepared electrodes for the photoelectrocatalytic degradation of 4-nitrophenol, a target pollutant dissolved in aqueous conductive solution. The continuous reactor worked in total recirculation mode and the degradation runs were carried out by applying near UV-light, bias or both energy sources. The influence of flow rate, initial 4-nitrophenol concentration and applied potential on the degradation rate was studied.  相似文献   

5.
Si_3N_4陶瓷具有优异的力学性能和导热性能,然而其固有的高硬度和脆性极大地限制了其加工性能。通过添加导电相改善Si3N4陶瓷的导电性能可实现对Si_3N_4陶瓷的电火花加工。添加的导电相主要包括钛基化合物(TiN、TiC、TiC N、TiB_2)、锆基化合物(Zr B_2、Zr N)和MoSi_2等导电陶瓷以及碳纳米管(CNT)、碳纳米纤维(CNF)、石墨烯纳米片(GNP)等导电碳基纳米材料。本论文详细回顾了Si_3N_4基导电陶瓷的研究进展,并对今后Si_3N_4基导电陶瓷的发展趋势进行了展望。  相似文献   

6.
For an electrochemical water splitting system, titanate nanotubular particles with a thickness of ∼700 nm produced by a hydrothermal process were repetitively coated on fluorine-doped tin oxide (FTO) glass via layer-by-layer self-assembly method. The obtained titanate/FTO films were dipped in aqueous Fe solution, followed by heat treatment for crystallization at 500 °C for 10 min in air. The UV–vis absorbance of the Fe-oxide/titanate/FTO film showed a red-shifted spectrum compared with the TiO2/FTO coated film; this red shift was achieved by the formation of thin hematite-Fe2O3 and anatase-TiO2 phases verified using X-ray diffraction and Raman results. The cyclic voltammetry results of the Fe2O3/TiO2/FTO films showed distinct reversible cycle characteristics with large oxidation–reduction peaks with low onset voltage of IV characteristics under UV–vis light illumination. The prepared Fe2O3/TiO2/FTO film showed much higher photocurrent densities for more efficient water splitting under UV–vis light illumination than did the Fe2O3/FTO film. Its maximum photocurrent was almost 3.5 times higher than that obtained with Fe2O3/FTO film because of the easy electron collection in the current collector. The large current collection was due to the existence of a TiO2 base layer beneath the Fe2O3 layer.  相似文献   

7.
Effects of the vaporization of residual Li on the microstructure, oxidation behavior and high temperature properties of a low-temperature pressureless sintered Si3N4 using LiYO2 additive were investigated. The oxidation and creep resistance of the Si3N4 was improved after an annealing at 1650 °C because residual Li, which deteriorated the high temperature properties of the Si3N4, could be mostly removed. The high temperature deformation of the Si3N4 was strongly suppressed after the annealing treatment. The annealed specimens retained 64% of the room temperature strength at 1300 °C in air. The present investigation reports a method to improve the high temperature properties of Si3N4.  相似文献   

8.
The effect of carboxymethyl cellulose (CMC) addition on the preparation of Si3N4 ceramic foam by the direct foaming method was investigated. The addition of CMC in the foam slurry can reduce the surface tension, increase the viscoelasticity of foams, and improve their stability and fluidity. The foam ceramics show low shrinkage during drying owing to the CMC and the gelation of acrylamide monomers. The surface structure of dried foam is uniform, and there are no macropores and cracks on the surface. The sintered Si3N4 foam ceramics have very uniform pore distribution with average pore size of about 16 μm; the flexure strength is as high as 3.8–77.2 MPa, and the porosity is about 60.6–82.1%.  相似文献   

9.
Slip casting process combined with reaction bonded silicon nitride (RBSN) was used to prepare porous Si3N4 ceramic with near-net and complex shape. A butyl stearate (BS) coated process was introduced to restrain the hydrolysis of Si, and ammonium polyacrylate (NH4PAA) was used to enhance the dispersion of coated Si. The measured oxygen content showed that the hydrolysis of Si was strongly prohibited by BS coating, and relatively low viscosity was obtained with the addition of 0.25-1.5 wt% NH4PAA to the 60 wt% solid load slurry. 40-60 wt% solid load slurries were used for slip casting in the experiment. After vacuum degassing, slip casting, debindering and nitridation, a density of 1.57-1.92 g/cm3 (porosity 50.9-40%) and a flexural strength of 47-108 MPa were obtained. The samples without vacuum degassing showed a large number of nanowires grown in the large pores.  相似文献   

10.
The Ni/Si3N4 coated powders were successfully prepared via electroless plating method by using hydrazine hydrate (N2H4·H2O) as a reducing agent. The coated powders were characterized with several techniques such as scanning electron microscope, energy dispersive spectrometer, Transmission electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction to determine particle size, composition, phase and morphology. It indicated that the core–shell structure of Ni/Si3N4 has been constructed in the present method, the Ni layer on the surface of Si3N4 particles was relatively continuous and uniform, but it is inevitable that only in very small area occurred the aggregation of Ni particles. In principle, the coated process was successful and expectable.  相似文献   

11.
Coated pore-forming agent method (CPFAM) was introduced to improve the pore-forming agent method (PFAM) for the preparation of porous silicon nitride ceramics. Using SEM in combination with measurements of porosity and flexural strength, it has been found that the flexural strength of the porous silicon nitride ceramics produced with the CPFAM method is significantly higher than those without the coating process: a 100% increase in flexural strength for samples with a porosity of 50%. The porous silicon nitride ceramics also have a very low dielectric constant, which is ideal for applications in wave-transmitting systems. The enhanced mechanical strength of the silicon nitride made by the CPFAM method is a result of a more uniform distribution of the spherical pores and the formation of a dense layer of rod-like microstructures near the surface of the pores.  相似文献   

12.
Large-scale composite powders containing silicon carbide (SiC) particles and silicon nitride nanowires (Si3N4-NWs) were synthesized in situ by combustion synthesis (CS). In this process, a mixture of silicon, carbon black, polytetrafluoroethylene (PTFE) and a small amount of iron powders was used as the precursor. The products were characterized by XRD, SEM, EDS and TEM. The particles are equiaxed with diameters in the micron range, and the in situ formed nanowires are straight with uniform diameters of 20-350 nm and lengths of tens of microns. The Si3N4-NWs are characterized to be α-phase single crystals grown along the [1 0 1] or [1 0 0] direction. VLS and SLGS processes are proposed as the growth mechanisms of the nanowires. The as-synthesized powders have great potential for use in the preparation of high-performance SiC/Si3N4-NW composites.  相似文献   

13.
Borophosphosilicate bonded porous silicon nitride (Si3N4) ceramics were fabricated in air using a conventional ceramic process. The porous Si3N4 ceramics sintered at 1000–1200 °C shows a relatively high flexural strength and good dielectric properties. The influence of the sintering temperature and contents of additives on the flexural strength and dielectric properties of porous Si3N4 ceramics were investigated. Porous Si3N4 ceramics with a porosity of 30–55%, flexural strength of 40–130 MPa, as well as low dielectric constant of 3.5–4.6 were obtained.  相似文献   

14.
C-doped and C- and V-doped TiO2 photocatalysts were prepared by a sol–gel process. Both catalysts showed high activity for the degradation of acetaldehyde under visible irradiation (>420 nm). The co-doped TiO2 catalysts also were highly active in the dark; 2.0% V-containing co-doped TiO2 had the highest activity, comparable with the activity under visible light irradiation. The catalysts were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), and N2 adsorption–desorption. The results suggest that vanadium ions were introduced both on the surface and into the bulk of TiO2. A free electron, induced by the formation of V5+ in the sublayers of TiO2 during calcination at 500 °C in air, was delocalized and promoted into the conduction band by thermal energy and further transferred to O2, generating a superoxide radical anion (O2) that is responsible for degradation of acetaldehyde in the dark. In addition to functioning as a photosensitizer that shifts the optical response of TiO2 from the ultraviolet (UV) to the visible light region, the doped elemental carbon increased the surface area and improved the dispersion of vanadium.  相似文献   

15.
Si3N4 ceramic/42CrMo steel joints were obtained by employing TiNp modified Ag–Cu–Ti active filler and subsequently the effect of TiNp content on the microstructure and mechanical properties of the joints was investigated. Microstructural examination revealed that TiN+Ti5Si3 reaction layer was adjacent to the Si3N4 ceramic while a TiC reaction layer was close to the steel substrate. With the increase of TiNp content, more fine grains and less Ag–Cu eutectic appeared in the joint and the reaction layers near the two base materials became thinner. The flexural strength of the joint obtained by four-point bending test climbed about 100% with the optimum TiNp content of 5 vol%, comparing with the case without TiNp. Thermal stress distributions in the joint were analyzed using finite element modeling computations, which accorded well with the bending test results.  相似文献   

16.
SnO2 nanoparticle embedded TiO2 nanofibers were fabricated by a simple electrospinning method. The relationship between the SnO2/TiO2 weight ratio and photocatalytic efficiency was investigated from the view point of Rhodamine B decomposition. In addition, electron microscopic analysis, energy dispersive analysis, X-ray diffraction analysis, and photoluminescence study demonstrated that SnO2 nanoparticle was successfully embedded in TiO2 nanofibers. TiO2 nanofibers containing SnO2 nanoparticle provided an enhanced interfacial region between TiO2 and SnO2. SnO2 nanoparticles embedded TiO2 nanofibers exhibited highly efficient photocatalytic activity under UV light irradiation due to high charge separation of electron–hole pairs.  相似文献   

17.
利用直流反应磁控溅射法在Si3N4陶瓷基体上制备了TiN导电薄膜。采用X射线衍射仪(XRD)、扫描电镜(SEM)和电子能谱(EDS)对薄膜的物相组成以及表面形貌进行分析,表明TiN薄膜均匀,且与基体有较强的附着力。采用SZ82型四探针测试仪对薄膜进行了方阻随厚度变化的分析,表明薄膜的厚度对薄膜的电性能有很大的影响。  相似文献   

18.
FeTiO3/TiO2, a new heterojunction-type photocatalyst working at visible light, was prepared by a simple sol–gel method. Not only did FeTiO3/TiO2 exhibit greatly enhanced photocatalytic activity in decomposing 2-propanol in gas phase and 4-chlorophenol in aqueous solution, but also it induced efficient mineralization of 2-propanol under visible light irradiation (λ ≥ 420 nm). Furthermore, it showed a good photochemical stability in repeated photocatalytic applications. FeTiO3 showed a profound absorption over the entire visible range, and its valence band (VB) position is close to that of TiO2. The unusually high photocatalytic efficiency of the FeTiO3/TiO2 composite was therefore deduced to be caused by hole transfer between the VB of FeTiO3 and TiO2.  相似文献   

19.
20.
Based on orthogonal experimental results of porous Si3N4 ceramics by gel casting preparation, a three-layer back propagation artificial neural network (BP ANN) was developed for predicting the performances of porous Si3N4 ceramics. The results indicated that BP ANN was a very useful and accurate tool for the prediction and optimization of porous Si3N4 ceramics performances. By using the developed ANN model, the influences of the compositions on performances of porous Si3N4 ceramics were investigated, and some important conclusions were drawn as follows: for the flexural strength of Si3N4 ceramics, solid loading has an optimum value where can achieve a maximum value, and the optimum solid loading decreases with the increase of monomer content; the porosity of sintering body monotonically decreases with the increase of solid loading, and it increases with monomer content; the porosity of sintering body monotonically increases with the increase of the ratio of crosslinking agent to monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号