首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Manual muscle test scores (MMTS) and maximum voluntary contraction (MVC) force measurements were made from triceps brachii muscles of 70 individuals with chronic cervical spinal cord injury (SCI). Both MMTS and strength assessments showed that asymmetrical motor deficits were common. Muscles with MMTS of 3 generated an average of nine percent MVC force produced by control muscles. In this SCI population, little residual voluntary force is apparently needed for triceps brachii to work against gravity. Only 24 percent of muscles tested had this strength, however, indicating the need to develop strategies to alleviate this muscle weakness. MMTS and force were related positively but each MMTS was not associated with a unique force range. MVC force generating capacity is therefore only one factor that determines whether or not a muscle can work with or against gravity and against resistance.  相似文献   

2.
PURPOSE: The bilateral deficit is characterized by a decrease in maximum voluntary contraction (MVC) force during bilateral activation of homologous muscles compared with sum of the forces produced during unilateral MVC of the muscles. A proposed relationship between the bilateral deficit and the ability to activate high threshold motor units was investigated. The effects of muscle fatigue, induced using two contraction speeds, on the size of the bilateral deficit were measured. Based on previously published findings, it was expected that fast velocity isokinetic contractions compared with slow velocity isokinetic contractions would produce a larger bilateral deficit. It was hypothesized that following a unilateral fatigue protocol, the size of the bilateral deficit at the fast and slow velocities would be comparable. METHODS: The bilateral deficit was measured for isokinetic knee extension in 20 men (age:25 +/- 3 yr) before and after a fatigue protocol performed at 30 and 150 degreesxs(-1). RESULTS: The size of the bilateral deficit was initially the same at both velocities. The fatigue protocol at each contraction speed significantly decreased the maximum voluntary knee extension moment. The size of the bilateral deficit was not influenced by the 150 degrees fatigue protocol (pretest: -14.0% post-test: -12.5%; P > 0.05). However, the size of the bilateral deficit increased following the 30 degreesxs(-1) fatigue protocol (pretest: -13.7%; post-test: -21.9%; P < 0.05). CONCLUSIONS: The failure of the size of the bilateral deficit to be comparable at 30 and 150 degreesxs(-1) following fatigue is contrary to previous published reports that suggested reduced activation of high threshold motor unit is the primary mechanism underlying the bilateral deficit.  相似文献   

3.
In Duchenne muscular dystrophy (DMD), sphincter muscles tend to be clinically spared. However, urinary incontinence is occasionally reported, usually late in the course of the disease. We wished to determine the etiology of urinary dysfunction in patients with DMD. Seven boys with DMD and urinary dysfunction were examined by a neurologist and a urologist followed by urodynamic and electrophysiological assessment. Based on the results of these evaluations, patients were defined as having an upper motor neuron (UMN), lower motor neuron (LMN), or myopathic lesion. Five of the patients had UMN abnormalities consisting of either uninhibited contractions or bladder/sphincter dyssynergy. One patient had a LMN lesion with prolonged duration and high-amplitude motor units. No patient demonstrated myopathic motor units. Five boys had undergone spinal fusion for scoliosis. We conclude that urinary incontinence in DMD is most often due to UMN dysfunction and not due to a severe myopathy of the detrusor or external sphincter. The most likely causes of the UMN abnormalities are severe scoliosis or a complication of spinal fusion surgery.  相似文献   

4.
We modified the World Federation of Neurology (WFN) diagnostic criteria for ALS to facilitate early diagnosis and used these criteria for enrollment of ALS patients in a clinical trial. The criteria developed required lower motor neuron (LMN) involvement in at least two limbs and upper motor neuron involvement in at least one region (bulbar, cervical, or lumbosacral). The EMG finding of fibrillation potentials was required for evidence of LMN involvement. Electrodiagnostic studies, neuroimaging, and laboratory studies were also used to exclude disorders that might mimic ALS. Using these criteria, the diagnosis of ALS was made at a mean time of 9.7 months from onset of symptoms, which compares favorably with the 12-month period cited in the literature. Using clinical assessment at completion of the trial, the diagnosis of ALS was believed to be accurate in those patients entered in the trial. However, pathologic confirmation of the diagnosis of ALS was not obtained. Based on our preliminary experience, we propose that these ALS diagnostic criteria will facilitate early diagnosis of ALS. Future studies should prospectively compare these criteria with the WFN criteria currently in use.  相似文献   

5.
There is no nonvolitional method of assessing quadriceps strength which both supramaximally activates the muscle and is acceptable to subjects. In 10 normal subjects and 10 patients with suspected muscle weakness we used magnetic stimulation of the femoral nerve to elicit an isometric twitch and measured twitch tension (TwQ), surface electromyogram in addition to the maximum voluntary contraction force (MVC). Supramaximality was achieved in all subjects at a mean of 83% of maximum stimulator output. When supramaximal, TwQ was reproducible (mean coefficient of variation 3.6%, range 0.7-10.9) and correlated well with MVC (r2 = 0.83, P<0.001). In 7 normal subjects we measured TwQ before and after a fatiguing protocol; after 20 min TwQ was a mean of 55% (range 29-77%) of baseline and remained substantially reduced at 90 min. Magnetic femoral nerve stimulation is a painless, supramaximal method of assessing quadriceps strength and fatigue which is likely to be of value in clinical and physiological studies.  相似文献   

6.
Classically, the critical force of a muscle (the relative force below which an isometric contraction can be maintained for a very long time without fatigue) is comprised of between 15 and 20% of its maximum voluntary contraction (MVC). However, some authors believe that the value is below 10% MVC. If such is the case, signs that accompany the establishment of muscle fatigue (EMG changes, continuous increase in systolic blood pressure [SBP] and heart rate [HR]) would have to appear more rapidly and with a higher intensity if the muscle is already partially fatigued at the start of maintaining a contraction at 10% MVC. Twelve healthy untrained participants carried out two isometric contractions with the digit flexors: one (test A) began with a maximum contraction sustained for 4 min followed without interruption by a contraction at 10% MVC for 61 min; the other (test B) was a contraction maintained at 10% MVC for 65 min. For test B, after an initial increase of 4 bpm with respect to at rest, HR remained stable until the end of contraction, SBP progressively increased by 24 mm Hg in 28 min, then remained unchanged until the end, and there were no significant changes in EMG (absence of spectral deviation towards low frequencies). For test A, in spite of the initial maximum contraction, changes in the parameters being studied (total maintenance time, HR, SBP, EMG) during maintenance at 10% MVC were identical to those for test B. The results show that (1) when the number and intensity of the co-contractions are minimized by applying an appropriate posture, it is possible to sustain an isometric contraction at 10% MVC for at least 65 min without the appearance of signs of muscle fatigue; (2) the critical force of the digit flexors is higher than 10% MVC.  相似文献   

7.
The sizes of the motor-evoked potentials (MEPs) and the durations of the silent periods after transcranial magnetic stimulation were examined in biceps brachii, brachioradialis and adductor pollicis in human subjects. Stimuli of a wide range of intensities were given during voluntary contractions producing 0-75% of maximal force (maximal voluntary contraction, MVC). In adductor pollicis, MEPs increased in size with stimulus intensity and with weak voluntary contractions (5% MVC), but did not grow larger with stronger contractions. In the elbow flexors, MEPs grew little with stimulus intensity, but increased in size with contractions of up to 50% of maximal. In contrast, the duration of the silent period showed similar changes in the three muscles. In each muscle it increased with stimulus intensity but was unaffected by changes in contraction strength. Comparison of the responses evoked in biceps brachii by focal stimulation over the contralateral motor cortex with those evoked by stimulation with a round magnetic coil over the vertex suggests an excitatory contribution from the ipsilateral cortex during strong voluntary contractions.  相似文献   

8.
OBJECTIVES AND METHODS: We looked for influences of the experimental condition on the silent period (SP) from transcranial motor cortex stimulation and analyzed how the instruction given to the subject, as well as the individual reaction time, might affect the duration of the SP in the biceps brachii muscle. RESULTS: The duration of the SP was found to critically depend on the subject's voluntary reaction of the target muscle immediately after the stimulus. With low stimulus intensity and low background force, the duration of the silent period was significantly longer in 10 of 13 subjects (P = 0.002) when they were instructed to relax quickly after the stimulus rather than to maintain the the force at a constant level. A significant shortening of the SP (P = 0.02) was observed when the subjects were instructed to perform a rapid contraction of the target muscle in reaction to the cortical stimulus. With low stimulus intensity and high background force, the same influence of the instruction set was found in 6 of 13 subjects. When the subjects were left without precise instruction, the SP duration was unpredictable. In 10 subjects, the SP corresponded to that obtained with the instruction to maintain the force at a constant level. However, in 3 subjects it was prolonged to the value observed in the 'relax' instruction. With greater stimulus intensities, the effect of the instruction set on the SP duration was generally smaller. A significant prolongation was nevertheless found at low background forces with rapid relaxation (P < 0.001), and a significant shortening was found at high background forces with rapid contraction (P < 0.001) after the stimulus. The SP duration observed with 20% of maximal voluntary contraction (MVC) significantly correlated with the individual reaction time. No such correlation was found for the SP obtained with 80% MVC. The SP was slightly longer at 20% MVC, as compared to 80% MVC within each instruction group. This effect was significant (P < 0.05) at low stimulus intensities. CONCLUSIONS: Therefore, when assessing the SP duration for diagnostic purposes, not only the stimulus intensity but also the background force and the voluntary reaction must be standardized. Furthermore, great stimulus intensities and high background forces should be used to minimise the effects of instruction set and individual reaction time.  相似文献   

9.
Because primate studies provide data for the current experimental models of the human oculomotor system, we investigated the relationship of lateral rectus muscle motoneuron firing to muscle unit contractile characteristics in the squirrel monkey. Also examined was the correlation of whole-muscle contractile force with the degree of evoked eye displacement. A force transducer was used to record lateral rectus whole-muscle or muscle unit contraction in response to abducens whole-nerve stimulation or stimulation of single abducens motoneurons or axons. Horizontal eye displacement was recorded using a magnetic search coil. (1) Motor units could be categorized based on contraction speed (fusion frequency) and fatigue. (2) The kt value (change in motoneuronal firing necessary to increase motor unit force by 1.0 mg) of the units correlated with maximum tetanic tension. (3) There was some tendency for maximum tetanic tension of this unit population to separate into three groups. (4) At a constant frequency of 100 Hz, 95% of the motor units demonstrated significantly different force levels dependent on immediately previous stimulation history (hysteresis). (5) A mean force change of 0.32 gm/ degrees and a mean frequency change of 4.7 Hz/ degrees of eye displacement were observed in response to whole-nerve stimulation. These quantitative data provide the first contractile measures of primate extraocular motor units. Models of eye movement dynamics may need to consider the nonlinear transformations observed between stimulation rate and muscle tension as well as the probability that as few as two to three motor units can deviate the eye 1 degrees.  相似文献   

10.
This study investigated the effects of 12 wk of voluntary wheel running on motor units from rat lateral gastrocnemius. Motor units were isolated via ventral root splitting (L5) from active or sedentary rats and were classified into slow, fast-fatigue-resistant, and fast-fatigable (FF) units. An overall increase in mean motor unit tetanic tension (35%) was accompanied by a decrease in mean motor unit fatigue resistance (-10%). These adaptations were localized in the fast unit population but varied among fast motor unit subtypes. The overall increase in tetanic force was due primarily to increases in fast-fatigue-resistant units (300%), whereas changes in fatigue resistance (-43%) were confined to FF units. However, the changes seen with activity may have been partly obscured by classifying fast motor units based on fatigability, since a significant increase in tetanic force accompanied by a decreased twitch one-half relaxation time was apparent in units falling in the midrange of the tetanic force continuum and included a number of FF units. These data provide direct demonstration of nonuniform motor unit adaptations subsequent to increases in normal functional activity.  相似文献   

11.
Motor unit recruitment patterns were studied during prolonged isometric contraction using fine wire electrodes. Single motor unit potentials were recorded from the brachial biceps muscle of eight male subjects, during isometric endurance experiments conducted at relative workloads corresponding to 10% and 40% of maximal voluntary contraction (MVC), respectively. The recordings from the 10% MVC experiment demonstrated a characteristic time-dependent recruitment. As the contraction progressed both the mean number of motor unit spikes counted and the mean amplitude of the spikes increased significantly (P < 0.01). This progressive increase in spike activity was the result of a discontinuous process with periods of increasing and decreasing activity. The phenomenon in which newly recruited motor units replace previously active units is termed "motor unit rotation" and appeared to be an important characteristic of motor control during a prolonged low level contraction. In contrast to the 10% MVC experiment, there was no indication of de novo recruitment in the 40% MVC experiment. Near the point of exhaustion a marked change in action potential shape and duration dominated the recordings. These findings demonstrate a conspicuous difference in the patterns of motor unit recruitment during a 10% and a 40% MVC sustained contraction. It is suggested that there is a close relationship between intrinsic muscle properties and central nervous system recruitment strategies which is entirely different in fatiguing high and low level isometric contractions.  相似文献   

12.
The role of intramuscular metabolite changes in the adaptations following isometric strength training was examined by comparing the effect of short, intermittent contractions (IC) and longer, continuous (CC) contractions. In a parallel study, the changes in phosphate metabolites and pH were examined during the two protocols using whole-body nuclear magnetic resonance spectroscopy (NMRS). Seven subjects trained three time per week for 14 weeks. The right leg was trained using four sets of ten contractions, each lasting 3 s with a 2-s rest period between each contraction and 2 min between each set. The left leg was trained using four 30-s contractions with a 1-min rest period between each. Both protocols involved isometric contractions at 70% of a maximum voluntary isometric contraction (MVC). The MVC, length:tension and force:velocity relationships and cross-sectional area (CSA) of each leg were measured before and after training. The increase in isometric strength was significantly greater (P = 0.041) for the CC leg (median 54.7%; P = 0.022) than for IC (31.5%; P = 0.022). There were no significant differences between the two protocols for changes in the length:tension or force:velocity relationships. There were significant increases in muscle CSA for the CC leg only. NMRS demonstrated that the changes in phosphate metabolites and pH were greater for the CC protocol. These findings suggest that factors related to the greater metabolite changes during CC training results in greater increases in isometric strength and muscle CSA.  相似文献   

13.
Two indices of motor unit recruitment, the ramp-force and repetitive-discharge thresholds, were compared in the first dorsal interosseus muscle of ten young and twelve elderly subjects. The purpose was to determine the effect of age on the relationship between the two recruitment thresholds and the spike-triggered average force of motor units. Each subject performed three tasks requiring isometric abduction of the left index finger: a maximum voluntary contraction (MVC), a ramp-and-hold contraction, and a repetitive-discharge task. The elderly subjects used coactivation of the antagonist muscle (second palmar interosseus) more frequently than the young subjects during the ramp-and-hold contraction. Many elderly subjects expressed difficulty with the controlled ramp-down phase of the ramp-and-hold contraction and preferred a coactivation strategy to a derecruitment strategy for this task. There were no differences due to age or gender in the ramp-force thresholds between the various groups. However, the normalized repetitive-discharge threshold was significantly less for the younger subjects and for the male subjects. Nonetheless, the two recruitment thresholds were able to predict the spike-triggered average force with similar success for both the young and the elderly subjects. These data suggest that the recruitment threshold of a motor unit in first dorsal interosseus was characterized equally well by either the ramp-force or repetitive-discharge measurement for both young and elderly subjects but that coactivation was used more frequently by the elderly subjects during the ramp-and-hold task.  相似文献   

14.
The primary objectives of this study were to test whether 1) N-acetylaspartate (NAA), a neuronal marker, is reduced in motor cortex and corticospinal-tract (CST) brain regions of ALS patients; and 2) motor cortex NAA correlates to a clinical measurement of upper motor neuron function in ALS patients. Ten probable or definite ALS patients and nine neurologically normal control subjects were studied. Three axial planes of two-dimensional 1H MRSI data were collected, using a single spin-echo multislice sequence (TE140/TR2000). Two of the 1H MRSI planes were positioned superior to the lateral ventricles, and one plane was positioned at the level of the internal capsule. Spectroscopy voxels were selected from motor cortex, frontal cortex, parietal cortex, medial gray matter, centrum semiovale white matter, anterior internal capsule, and posterior internal capsule. Peak integrals were obtained for the three major 1H MRSI singlet resonances, NAA, creatine and phosphocreatine (Cr), and cholines (Cho). Maximum finger-tap rate was used as a clinical measurement of upper motor neuron function. In ALS, brain NAA/(Cho+Cr) was reduced 19% (p=0.024) in the motor cortex and 16% (p=0.021) in the CST (centrum semiovale and posterior internal capsule) regions. NAA/ (Cho+Cr) was not reduced in frontal cortex, parietal cortex, medial gray matter, or anterior internal capsule. There was a significant relation between ALS motor cortex NAA/(Cho+Cr) and maximum finger-tap rate (r=0.80; p=0.014). NAA/(Cho+Cr) was reduced in motor cortex and CST regions and unchanged in other brain regions of ALS patients when compared with controls. These findings are consistent with the known distribution of neuronal loss in ALS. The positive correlation between motor cortex NAA/(Cho+Cr) and maximum finger-tap rate suggests that reduced NAA/(Cho+Cr) is a surrogate marker of motor cortex neuron loss in ALS. These findings support the study of 1H MRSI NAA measurement as an objective and quantitative measurement of upper motor neuron dysfunction in ALS.  相似文献   

15.
The effects of increasing age on skeletal muscle fatigue and endurance were assessed in 22 healthy young (14 men and 8 women; mean age, 28 +/- 6 years) and 16 healthy old (8 men and 8 women; mean age, 73 +/- 3 years) individuals. All subjects performed 100 repeated maximum dynamic knee extensions at 90 degrees.s-1 (1.57 rad.s-1) using an isokinetic dynamometer (Cybex II). Peak torque was recorded during every contraction, and for each individual the maximal voluntary contraction (MVC), the fatigue rate, the endurance level, and the relative reduction in muscle force were determined. MVC and endurance level were significantly lower in old men and women, but there was no discernible difference in relative muscle force reduction and fatigue rate between young and old individuals. We conclude that thigh muscles of older individuals are weaker than those of younger individuals, but relative to their strength, older individuals have similar properties as younger individuals with respect to muscle fatigue and endurance.  相似文献   

16.
Post-exercise facilitation and post-exercise depression are phenomena described in motor evoked potentials (MEPs) elicited to transcranial magnetic stimulation. Brief, non-fatiguing muscle activation produces post-exercise facilitation, and prolonged fatiguing muscle activation produces post-exercise depression. We studied 12 normal subjects to determine whether post-exercise depression occurs before fatigue is reached. We recorded MEPs from the resting extensor carpi radialis muscle after increasing the duration of isometric wrist extension, at 50% of maximum voluntary contraction, until the muscle fatigued. Fatigue was defined as the inability to maintain that force. The mean exercise duration before the muscle fatigued was 130 s, and post-exercise depression occurred only beyond 90 s of exercise. We conclude that post-exercise depression is detectable only after prolonged muscle activation.  相似文献   

17.
The changes in muscle fiber conduction velocity (MFCV) and median frequency (MDF) during and after muscle fatigue were investigated in 9 younger (mean age: 29.3) and 7 elderly (mean age: 72.0) healthy subjects to determine if age has any effect on them. The surface EMG of the abductor digiti minimi muscle was examined at 50% of maximal voluntary contraction (MVC) during a prefatigue session. The subjects were instructed to continue applying maximal force until the force declined to 50% MVC. EMG signals were measured during brief subsequent contractions at 50% MVC until 60 minutes after fatigue as a postfatigue session. The decrement in MFCV and MDF at 50% MVC before and after fatigue was 73.4%, 67.3% in the younger and 71.2%, 66.7% in the elderly subjects, respectively. MFCV and MDF recovered to initial value after fatigue more slowly in the elderly subjects (recovery time: elderly: MFCV 6.0 min., MDF 6.0 min.; younger: MFCV 2.77 min., MDF 3.00 min.) (P < 0.05, Mann-Whitney test). The over-shooting recovery phase was recognized in both age groups, but the elderly subjects had a smaller and shorter one. The slower recovery in the elderly suggested that they possibly had less potential to recovery the membrane potential propagation, metabolic capacity and more type 1 fiber composition. The smaller and shorter overshooting in the elderly might be due to less increase of muscle swelling and/or less membrane hyperpolarization.  相似文献   

18.
Myoelectric signals were detected from the tibialis anterior muscle of 5 subjects with a quadrifilar needle electrode while the subjects generated isometric forces that increased linearly with time (10% of maximal voluntary contraction/s) up to maximal voluntary level. Motor unit firing rates were studied as a function of force throughout the full range of muscle force output. The relationship between force and firing rate was found to contain three distinct regions. At recruitment and near maximal force levels, firing rates increased more rapidly with force than in the intermediate region. Furthermore, in the regions with rapid increases, the rate of change of firing rate was correlated to the recruitment threshold, with higher recruitment threshold motor units displaying greater rates of change. In the intermediate region, all motor units had similar rates of change of firing rate. A weak positive correlation was found between initial firing rate and recruitment threshold. Firing rates of motor units at any instant were found to be ordered according to the recruitment order: at any given time in the contraction motor units with lower recruitment thresholds had higher firing rates than units with higher recruitment thresholds. Firing rates of all motor units were observed to converge to the same value at maximal forces. Mechanisms underlying motor unit recruitment and firing rate modulation are discussed in the context of a conceptual model.  相似文献   

19.
The aim of this study was to examine the reliability of the twitch interpolation technique when used to estimate the true isometric knee extensor muscle strength. This included an examination of whether submaximal activation causes any bias in the estimation of the true muscle strength and an examination of the precision of the method. Twenty healthy subjects completed three contraction series, in which the subjects were told to perform as if their voluntary strength was 60%, 80% or 100% of that determined by a maximal voluntary contraction (MVC). Electrical muscle stimulations were given at each of five different contraction levels in each series. At torque levels above 25% of MVC the relationship between torque and twitch size could be approximated to be linear. The true muscle strength (TMS) could therefore be estimated using linear regression of the twitch-torque relationship to the torque point of no twitch in each of the three series, termed TMS60, TMS80 and TMS100. The TMS80 was slightly lower (P < 0.01), median 94% (IQ range 87-101%) of the TMS100. The TMS60 was median 99% (IQ range 83-125%) (NS) of TMS100, but a few severe outliers were observed. In conclusion, we found the reliability of the method acceptable for many research purposes, if series with estimated central activation of below 40-50% were excluded. The only moderate precision and the slightly lower estimations in subjects applying submaximal does, however, limit its usefulness.  相似文献   

20.
The high incidence of serious chest infections in patients with Parkinson's disease is unexplained, but an impairment in cough reflex may have a role. Maximal voluntary cough (MVC) and reflex cough (RC) to inhalation of ultrasonically nebulized distilled water were analyzed in patients with Parkinson's disease and age-matched control subjects by monitoring the integrated electromyographic activity (IEMG) of abdominal muscles. The peak amplitude of IEMG activity (IEMGP) was expressed as a fraction of the highest IEMGP value observed during MVC corrected to account for possible losses in abdominal muscle force due to reduced central muscle activation. Cough intensity was indexed in terms of both the IEMGP and the ratio of IEMGP to the duration of the expiratory ramp (TEC), i.e., the rate of rise of IEMG activity. Cough threshold was slightly higher in patients than in control subjects, but the difference failed to reach statistical significance. Compared with control subjects, patients displayed a lower IEMGP during maximal expiratory pressure maneuvers (PEmax), MVC, and RC (p always < 0.01); TEC during RC was longer (p < 0.01) than in controls. Consequently, the rate of rise of IEMG activity during cough was always lower in patients (p < 0. 01), especially during RC. Finally, PEmax, and both the peak and rate of rise of IEMG activity during RC were inversely related to the level of clinical disability (Spearman rank correlation coefficient, rs = -0.88, -0.86, and -0.85, respectively, p always < 0.01). The results indicate that the central neural mechanisms subserving the recruitment of motor units and/or the increase in their frequency of discharge during voluntary and, even more markedly, RC are impaired in patients with Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号