共查询到20条相似文献,搜索用时 15 毫秒
1.
MJ Lorite MG Thompson JL Drake G Carling MJ Tisdale 《Canadian Metallurgical Quarterly》1998,78(7):850-856
A proteolysis-inducing factor (PIF) isolated from a cachexia-inducing murine tumour (MAC16) produced a decrease in body weight (1.6 g, P < or = 0.01 compared with control subjects) within 24 h after i.v. administration to non-tumour-bearing mice. Weight loss was associated with significant decreases in the weight of the spleen and soleus and gastrocnemius muscles, with no effect on the weight of the heart or kidney and with an increase in weight of the liver. Protein degradation in isolated soleus muscle was significantly increased in mice bearing the MAC16 tumour. To define which proteolytic pathways contribute to this increase, soleus muscles from mice bearing the MAC16 tumour and non-tumour-bearing animals administered PIF were incubated under conditions that modify different proteolytic systems. In mice bearing the MAC16 tumour, there were increases in both cathepsin B and L, and the Ca2+-dependent lysosomal and ATP-dependent pathways were found to contribute to the increased proteolysis; whereas, in PIF-injected animals, there was activation only of the ATP-dependent pathway. Further studies in mice bearing the MAC16 tumour have provided evidence for increased levels of ubiquitin-conjugated proteins and increased mRNA levels for the 14 kDa ubiquitin carrier protein E2 and the C9 proteasome subunit in gastrocnemius muscle, suggesting activation of the ATP-ubiquitin-dependent proteolytic pathway. A monoclonal antibody to PIF attenuated the enhanced protein degradation in soleus muscle from mice bearing the MAC16 tumour, confirming that PIF is responsible for the loss of skeletal muscle in cachectic mice. 相似文献
2.
Soleus muscle atrophy was induced by hind-limb suspension of rats for 3 weeks with the intention of inducing a relative increase in the percentage of fast-twitch fibres and assessing modifications in muscle stiffness. A method of dual controlled releases was used to obtain tension/extension curves and force/velocity relationships characterizing the mechanical behaviour of the soleus. Fibre typing was achieved by myofibrillar adenosine 5'-triphosphatase staining. Results showed that hindlimb suspension decreased the percentage of slow-twitch fibres (-31%) to the profit of fast-twitch fibres (+370%) and intermediate fibres (+255%). This led to an increase in maximal shortening velocity. Tension/extension curves indicated a decrease in soleus stiffness after 3 weeks of unloading. Changes in elastic properties are interpreted in terms of modifications occurring in the active part and the passive part of the so-called series elastic component. These changes also suggest that the parameters derived from a twitch are inappropriate to account for modifications in speed-related properties of muscle. 相似文献
3.
4.
Among numerous reports of anatomical and functional coupling between the trigeminal and cervical systems is the demonstration that the sternocleidomastoid (SCM) muscles may become activated along with the masseter muscles during forceful abrupt biting maneuvers. Whether the co-activated SCM is also inhibited by stimuli that produce masseter inhibition is not known. This study evaluated the SCM for the presence of inhibition during mechanically-elicited (chin or forehead tap) and electrically-elicited (anterior maxillary gingiva stimulation) inhibition of the masseter muscle in ten healthy men. Surface EMG data were recorded bilaterally from the masseter and SCM muscles. The data for each muscle were converted to ratios of the pre-stimulus maximum voluntary contraction activity for each subject and averaged across subjects. Means of these percentages were determined at several defined pre- and post-stimulus intervals. The results indicate that masseter inhibition was clearly elicited by the electrical and both forms of mechanical stimulation. SCM co-inhibition could be evoked by electrical and chin tap stimulation but not by forehead tap. The responses to these stimuli varied among subjects, from trial to trial, and within subjects depending on the experimental condition. The fact that it was possible for this co-inhibition to be evoked is presented as further indication of the functional coupling of the trigeminal and cervical systems. 相似文献
5.
Injuries to the musculature of the posterior compartment of the calf are a frequent cause of pain, particularly among athletes. The majority of ruptures and strains in this area occur in the gastrocnemius muscle and, to a much lesser extent, in the plantaris muscle. We present a case of an unusual cause of calf pain--an isolated rupture of the soleus muscle--that developed in a 15-year-old girl after participation in a volleyball match. The injury was confirmed by T1- and T2-weighted magnetic resonance imaging. In this case, magnetic resonance imaging was helpful; however, the cost effectiveness of its use for this injury has yet to be proved. 相似文献
6.
BACKGROUND: Halothane directly relaxes airway smooth muscle partly by decreasing the Ca2+ sensitivity. In smooth muscle, receptor stimulation is thought to increase Ca2+ sensitivity via a cascade of heterotrimeric and small monomeric guanine nucleotide-binding proteins (G-proteins). Whether this model is applicable in the airway and where halothane acts in this pathway were investigated. METHODS: A beta-escin-permeabilized canine tracheal smooth muscle preparation was used. Exoenzyme C3 of Clostridium botulinum, which inactivates Rho monomeric G-proteins, was used to evaluate the involvement of this protein in the Ca2+ sensitization pathway. The effects of halothane on different stimulants acting at different levels of signal transduction were compared: acetylcholine on the muscarinic receptor, aluminum fluoride (AIF4-) on heterotrimeric G-proteins, and guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) on all G-proteins. RESULTS: Exoenzyme C3 equally attenuated acetylcholine- and AIF4--induced Ca2+ sensitization, suggesting that these pathways are both mediated by Rho. Halothane applied before stimulation equally attenuated acetylcholine- and AIF4--induced Ca2+ sensitization. However, when added after Ca2+ sensitization was established, the effect of halothane was greater during Ca2+ sensitization induced by acetylcholine compared with AIF4-, which, along with the previous result, suggests that halothane may interfere with dissociation of heterotrimeric G-proteins. Halothane applied during GTPgammaS-induced Ca2+ sensitization had no significant effect on force, suggesting that halothane has no effect downstream from monomeric G-proteins. CONCLUSION: Halothane inhibits increases in Ca2+ sensitivity of canine tracheal smooth muscle primarily by interfering with the activation of heterotrimeric G-proteins, probably by inhibiting their dissociation. 相似文献
7.
8.
The addition of an extra stimulus pulse, or doublet, at the beginning of a low-frequency train has been shown to substantially increase isometric force. This study examined the effects of muscle movement on this doublet potentiation. The soleus muscles of anesthetized cats were stimulated at 10 Hz for 1 s, with and without an added doublet (0.01-s interval). Isovelocity releases reduced but did not eliminate peak and early doublet potentiation (average 0.0-0.5 s after the doublet). Large releases, >0.4 s after the doublet, completely abolished sustained doublet potentiation (average 0.5-1.0 s after the doublet). In contrast, early isovelocity stretches boosted peak doublet potentiation. Yet, large stretches later in the stimulus almost completely eliminated sustained doublet potentiation. This suggests that a different mechanism is responsible for early and sustained doublet potentiations. Because peak and average initial doublet potentiation were not strongly affected by movement, doublets still offer a viable control strategy to increase force during movement while minimizing the number of stimulus pulses. 相似文献
9.
Previous studies showed variable success of angiotensin II (ANG II) antagonists to oppose systemic and renal vasoconstriction during long-term nitric oxide synthase (NOS) inhibition. We explored in short-term experiments whether the systemic and renal vasodilatory response to angiotensin II type 1 (AT1)-receptor blockade depends on the extent of NOS blockade. In the first series of experiments, anesthetized rats underwent clearance studies during continuous monitoring of mean arterial pressure (MAP), renal blood flow (RBF, flow probe), and renal vascular resistance (RVR). Compared with control animals, low-dose infusion of the NOS-inhibitor nitro-L-arginine (NLA) increased MAP and RVR, decreased glomerular filtration rate, RBF, and sodium excretion, and had no effect on plasma and kidney ANG II content. High-dose NLA induced stronger effects, did not affect plasma ANG II, and reduced kidney ANG II to approximately 60%. In the second series of experiments, we studied the effect of low- and high-dose NLA on autoregulation of RBF. NLA induced a dose-dependent increase in MAP and decrease in RBF but left autoregulation intact. The AT1-receptor antagonist losartan restored MAP and RBF during low-dose NLA but had no depressor or renal vasodilating effect during high-dose NLA. In summary, short-term NOS blockade causes a dose-dependent pressor and renal vasoconstrictor response, without affecting renal autoregulation, and AT1-receptor blockade restores systemic pressor and renal vasoconstrictive effects of mild NOS inhibition but fails to exert vasorelaxation during strong NOS blockade. Both levels of NOS inhibition did not importantly alter intrarenal ANG II levels. Apparently the functional role of endogenous ANG II as determinant of vascular tone is diminished during strong NOS inhibition. 相似文献
10.
OF Olesen 《Canadian Metallurgical Quarterly》1994,201(2):716-721
Deposits in the brain of beta-amyloid and tau proteins constitute the two major characteristics of Alzheimer's disease. It is unknown how the deposits are formed, but several studies have suggested that proteases might play a crucial role. Consequently, the search for proteases responsible for processing tau and amyloid precursor protein has become relevant. Here, the ability of thrombin to process tau in vitro is examined. Thrombin, which is found in blood but presumably also in the nervous system, cleaves tau and generates a stable 25 kDa fragment. Immunoblot and amino acid sequencing reveals that the fragment is derived from the C-terminal of tau, and a microtubule assembly assay shows that it has a reduced capacity to promote microtubule assembly compared with full length tau. 相似文献
11.
1. Methods are described whereby the soleus muscle of the rat may be used for the investigation of initial processes in the absence of oxidative recovery. 2. The anaerobic conditions employed had no effect on the concentration of phosphocreatine in resting muscle or the mechanical response during contraction. 3. Muscles were stimulated tetanically for 10 s at 17-18 degrees C. Measurements were made of the heat production and metabolic changes that occurred during a 13 s period following the first stimulus. 4. There was no detectable change in the concentration of ATP. Neither was there detectable activity of adenylate kinase or adenylate deaminase. The changes in the concentration of glycolytic intermediaries were undetectable or very small. 5. The change in the concentration of phosphocreatine was large and amounted to -127 +/- 11-4 mumol/mmol Ct (mean and S.E. of the mean, negative sign indicates break-down, Ct = free creatine + phosphocreatine) which is equivalent to about -2-13 mumol/g wet weight of muscle. The heat production was 6549 +/- 408 mJ/mmol Ct (mean and S.E. of mean) which is equivalent to about 110 mJ/g. 6. About 30% of the observed energy output is unaccounted for by measured metabolic changes. 7. The ratio of heat production (corrected for small amounts of glycolytic activity) to phosphocreatine hydrolysis was -49-7 +/- 5-6 kJ/mol (mean and S.E. of mean), in agreement with previous results using comparable contractions of frog muscle, but different from the enthalpy change associated with phosphocreatine hydrolysis under in vivo conditions (-34 kJ/mol). 8. The results support the notion that the discrepancy between energy output and metabolism is an indication of an unidentified process of substantial energetic significance that is common to a number of species. 相似文献
12.
We analyzed the M wave and torque after repetitive activation and recovery of the human soleus muscle in individuals with spinal cord injury. Fifteen individuals with complete paralysis had the tibial nerve activated for 330 ms every second with a 20-Hz train. The M wave and torque were analyzed before fatigue, immediately after fatigue, and during recovery. The torque and three M-wave measurements (amplitude, duration, median frequency) changed significantly after fatigue in the chronic group, but the M-wave area was not changed. The M wave was completely recovered after 5 min of rest, even though the torque remained depressed during recovery. The M-wave changes appeared to contribute minimally to the reduced torque in individuals with chronic paralysis. The disassociation in the M-wave-torque relationship during fatigue and recovery suggests, that electrical stimulation under electromyography control is not an ideal method to optimize torque in paralyzed muscle. 相似文献
13.
In skeletal muscle, overall protein degradation involves the ubiquitin-proteasome system. One property of a protein that leads to rapid ubiquitin-dependent degradation is the presence of a basic, acidic, or bulky hydrophobic residue at its N terminus. However, in normal cells, substrates for this N-end rule pathway, which involves ubiquitin carrier protein (E2) E214k and ubiquitin-protein ligase (E3) E3alpha, have remained unclear. Surprisingly, in soluble extracts of rabbit muscle, we found that competitive inhibitors of E3alpha markedly inhibited the 125I-ubiquitin conjugation and ATP-dependent degradation of endogenous proteins. These inhibitors appear to selectively inhibit E3alpha, since they blocked degradation of 125I-lysozyme, a model N-end rule substrate, but did not affect the degradation of proteins whose ubiquitination involved other E3s. The addition of several E2s or E3alpha to the muscle extracts stimulated overall proteolysis and ubiquitination, but only the stimulation by E3alpha or E214k was sensitive to these inhibitors. A similar general inhibition of ubiquitin conjugation to endogenous proteins was observed with a dominant negative inhibitor of E214k. Certain substrates of the N-end rule pathway are degraded after their tRNA-dependent arginylation. We found that adding RNase A to muscle extracts reduced the ATP-dependent proteolysis of endogenous proteins, and supplying tRNA partially restored this process. Finally, although in muscle extracts the N-end rule pathway catalyzes most ubiquitin conjugation, it makes only a minor contribution to overall protein ubiquitination in HeLa cell extracts. 相似文献
14.
The effects of 14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044) on myosin heavy chain (MHC) isoform content of the rat soleus muscle and single muscle fibers were determined. On the basis of electrophoretic analyses, there was a de novo synthesis of type IIx MHC but no change in either type I or IIa MHC isoform proportions after either SF or HS compared with controls. The percentage of fibers containing only type I MHC decreased by 26 and 23%, and the percentage of fibers with multiple MHCs increased from 6% in controls to 32% in HS and 34% in SF rats. Type IIx MHC was always found in combination with another MHC or combination of MHCs; i.e., no fibers contained type IIx MHC exclusively. These data suggest that the expression of the normal complement of MHC isoforms in the adult rat soleus muscle is dependent, in part, on normal weight bearing and that the absence of weight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus. 相似文献
15.
G Perry MA Smith CE McCann SL Siedlak PK Jones RP Friedland 《Canadian Metallurgical Quarterly》1998,791(1-2):63-66
We examined vascular amyloid-beta deposition and other abnormalities in the posterior cerebral artery of consecutive cases of Alzheimer's disease (AD) compared to controls. Smooth muscle atrophy was a consistent feature in the cases of AD examined (p<0.01) and was surprisingly independent of adjacent amyloid-beta deposition. These findings suggest that vascular abnormalities are a consistent feature in AD and may be an important contributor to the pathogenesis and complications of AD. 相似文献
16.
17.
In this report we examine biochemical and genetic alterations in DNA topoisomerase II (topoisomerase II) in K562 cells selected for resistance in the presence of etoposide (VP-16). Previously, we have demonstrated that the 30-fold VP-16-resistant K/VP.5 cell line exhibits decreased stability of drug-induced topoisomerase II/DNA covalent complexes, requires greater ATP concentrations to stimulate VP-16-induced topoisomerase II/DNA complex formation, and contains reduced mRNA and protein levels of the M(r) 170,000 isoform of topoisomerase II, compared with parental K562 cells. K/VP.5 cells grown in the absence of VP-16 for 2 years maintained resistance to VP-16, decreased levels of topoisomerase II, and attenuated ATP stimulation of VP-16-induced topoisomerase II/DNA binding, compared with K562 cells. Sequencing of cDNA coding for two consensus ATP binding sites and the active site tyrosine in the K/VP.5 topoisomerase II gene indicated that no mutations were present in these domains. In addition, single-strand conformational polymorphism analysis of restriction fragments encompassing the entire topoisomerase II cDNA revealed no evidence of mutations in the gene for this enzyme in K/VP.5 cells. Nuclear extracts from K562 (but not K/VP.5) cells contained a heat-labile factor that potentiated VP-16-induced topoisomerase II/DNA covalent complex formation in isolated nuclei from K/VP.5 cells. Immunoprecipitated topoisomerase II from K/VP.5 cells was 2.5-fold less phosphorylated, compared with enzyme from K562 cells. Collectively, our data suggest that acquired VP-16 resistance is mediated, at least in part, by altered levels or activity of a kinase that regulates topoisomerase II phosphorylation and hence drug-induced topoisomerase II/DNA covalent complex formation and stability. 相似文献
18.
HW Lee L Smith GR Pettit A Vinitsky JB Smith 《Canadian Metallurgical Quarterly》1996,271(35):20973-20976
Bryostatins and phorbol esters acutely activate and subsequently down-regulate protein kinase C (PKC) by inducing its proteolysis via an unknown pathway. Here we show that treatment of renal epithelial cells with bryostatin 1 (Bryo) produced novel PKC-alpha species, which were larger than the native protein (80 kDa). The >80 kDa PKC-alpha species contained Ubi as indicated by immunostaining and accumulated in the presence of lactacystin, a selective inhibitor of proteolysis by the proteasome. In vitro experiments with 125I-ubiquitin and membranes from Bryo-treated cells showed that PKC-alpha became ubiquitinated by a reaction that depended on ATP and a cytosolic fraction. Lactacystin or a peptidyl aldehyde, Bz-Gly-Leu-Ala-leucinal, which inhibits certain proteinase activities of the proteasome, inhibited Bryo-evoked disappearance of PKC-alpha protein from the cells. Lacta preserved Bryo-induced 32P-labeled PKC-alpha indicating that the proteasome inhibitor spared activated enzyme from down-regulation in vivo. These findings show that Bryo induces the degradation of PKC-alpha by the ubiquitin-proteasome complex. 相似文献
19.
A 65-year-old woman developed nephrotic syndrome 7 years after receiving a cadaveric renal allograft. Renal biopsy and clinical laboratory evaluation revealed the underlying disease process to be AL amyloidosis. To our knowledge, this is the first reported case of de novo AL amyloid occurring in a renal allograft. 相似文献
20.
Vitronectin, found in the extracellular matrix and in circulating blood, has an important role in the control of plasminogen activation. It was shown to be the major protein substrate in human blood fluid for a protein kinase A (PKA) released from platelets upon their physiological stimulation with thrombin. Since vitronectin was shown to have only one PKA phosphorylation site, but to contain 2-3 mol covalently bound phosphate, it was reasonable to assume that other protein kinases might phosphorylate vitronectin at other sites in the protein. We have reported earlier that human serum contains at least three protein kinases, one of which was found to be cAMP independent and to phosphorylate a repertoire of plasma proteins that was very similar to that obtained upon phosphorylation of human plasma with protein kinase C (PKC). Since there are now several examples of proteins with extracellular functions that are phosphorylated by PKC, we undertook to study the phosphorylation of vitronectin by PKC. Here, we show that vitronectin is a substrate for PKC, and characterize the kinetic parameters of this phosphorylation (Km approximately tenfold lower than the concentration of vitronectin in blood), indicating that, from the biochemical point of view, this phosphorylation can occur at the locus of a hemostatic event. We also identify Ser362 as the major PKC phosphorylation site in vitronectin, and confirm this localization by means of synthetic peptides derived from the cluster of basic amino acids in vitronectin surrounding Ser362. We show that the PKC phosphorylation at Ser362 alters the functional properties of vitronectin, attenuating its cleavage by plasmin at Arg361-Ser362. This phosphorylation has the potential to regulate plasmin production from plasminogen by a feedback mechanism involving the above-mentioned plasmin cleavage, a loosening of the vitronectin grip on inhibitor 1 of plasminogen activators, and a subsequent latency of this regulatory inhibitor. 相似文献