首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Polymorphonuclear neutrophils (PMN) adherent to integrin ligands respond to inflammatory mediators by reorganizing their cytoskeleton and releasing reactive oxygen intermediates. As Src family tyrosine kinases are implicated in these responses, we investigated their possible role in regulating degranulation. Human PMN incubated on fibrinogen released lactoferrin in response to TNF-alpha and this response was inhibited by PP1, a Src family tyrosine kinase inhibitor. This drug had no effect on lactoferrin secretion induced by PMA, an adhesion-independent agonist of PMN degranulation. However, PP1 blocked secretion in PMN plated on plain tissue culture plastic, a surface inducing PMN spreading in the absence of any stimulus. Double knockout hck-/- fgr-/- PMN adherent to collagen or fibrinogen failed to release lactoferrin in response to TNF-alpha but responded to PMA as wild-type PMN. Degranulation induced by spreading over tissue culture plastic was also defective in hck-/- fgr-/- PMN. Defective adhesion-dependent degranulation required the absence of both kinases, because single knockout fgr-/- or hck-/- PMN responded as wild-type cells. Analysis of lactoferrin secretion in hck-/- fgr-/- or PP1-treated, suspended PMN showed that Src kinases are not implicated in degranulation dependent on activation of protein kinase C or increase in intracellular free Ca2+ but may play a role in the response to FMLP of cytochalasin B-treated PMN. These findings identify a role for Src family kinases in a signaling pathway leading to granule-plasma membrane fusion and suggest that Fgr and Hck would be targets for pharmacological control of adhesion-dependent degranulation in the inflammatory site.  相似文献   

2.
The adapter protein Shc has been implicated in mitogenic signaling via growth factor receptors, antigen receptors and cytokine receptors. Recent studies have suggested that tyrosine phosphorylation of Shc may play a key role in T lymphocyte proliferation via interaction of phosphorylated Shc with downstream molecules involved in activation of Ras and Myc proteins. However, the sites on Shc that are tyrosine phosphorylated in response to TCR engagement and the ability of different T cell tyrosine kinases to phosphorylate Shc have not been defined. In this report, we show that during TCR signaling, the tyrosines Y239, Y240 and Y317 of Shc are the primary sites of tyrosine phosphorylation. Mutation of all three tyrosines completely abolished tyrosine phosphorylation of Shc following TCR stimulation. Our data also suggest that multiple T cell tyrosine kinases contribute to tyrosine phosphorylation on Shc. In T cells, CD4/Lck-dependent tyrosine phosphorylation on Shc was markedly diminished when Y317 was mutated, suggesting a preference of Lck for the Y317 site. The syk-family kinases (Syk and ZAP-70) were able to phosphorylate the Y239 and Y240 sites, and less efficiently the Y317 site. Moreover, co-expression of Syk or ZAP-70 with Lck resulted in enhanced phosphorylation of Shc on all three sites, suggesting a synergy between the syk-family and scr-family kinases. Of the two potential Grb2 binding sites (Y239 and Y317), Y239 appears to play a greater role in recruiting Sos through Grb2. These studies have implications for Ras activation and mitogenic signaling during T cell activation.  相似文献   

3.
Bruton's tyrosine kinase (Btk) is essential for normal B lymphocyte development and function. The activity of Btk is partially regulated by transphosphorylation within its kinase domain by Src family kinases at residue Tyr-551 and subsequent autophosphorylation at Tyr-223. Activation correlates with Btk association with cellular membranes. Based on specific loss of function mutations, the Btk pleckstrin homology (PH) domain plays an essential role in this activation process. The Btk PH domain can bind in vitro to several lipid end products of the phosphatidylinositol 3-kinase (PI 3-kinase) family including phosphatidylinositol 3,4,5-trisphosphate. Activation of Btk as monitored by elevation of phosphotyrosine content and a cellular transformation response was dramatically enhanced by coexpressing a weakly activated allele of Src (E378G) and the two subunits of PI 3-kinase-gamma. This activation correlates with new sites of phosphorylation on Btk identified by two-dimensional phosphopeptide mapping. Activation of Btk was dependent on the catalytic activity of all three enzymes and an intact Btk PH domain and Src transphosphorylation site. These combined data define Btk as a downstream target of PI 3-kinase-gamma and Src family kinases.  相似文献   

4.
A specific method for pancreatic elastase II activity analysis was developed. True elastase II activity could be discriminated from that of elastase I and chymotrypsin. The postnatal development of four pancreatic proteases in the duodenal juice of children and in the pancreatic homogenates of calves and piglets was measured. The study was carried out on patients without (14 children) and with (5 children) pancreatic insufficiency. Calves and piglets were either milk-fed or weaned until slaughter at different ages. Profiles of enzyme development were globally similar in milk-fed piglets and calves, while in children without pancreatic insufficiency, no significant change was observed between 4 and 168 months. In children with pancreatic insufficiency, enzyme activity was low. In animals, elastase II and chymotrypsin activities were maximal at birth, decreased with age, and probably were associated with the digestion of milk protein. In contrast, elastase I and trypsin activities increased markedly after weaning in connection with the intake of solid food.  相似文献   

5.
To further understand the interactions between Zap-70, Src family kinases, and other T-cell proteins, we have examined the regulation of Zap-70 in the antigen-specific T-cell line BI-141. By analyzing derivatives containing an activated version of either p56lck or p59fynT, it was observed that the two Src-related enzymes augmented T-cell receptor (TCR)-mediated tyrosine phosphorylation of Zap-70, as well as its association with components of the antigen receptor complex. Importantly, the accumulation of TCR.Zap-70 complexes quantitatively and temporally correlated with the induction of tyrosine phosphorylation of the CD3 and zeta chains of TCR. Using a CD4-positive variant of BI-141, we also found that the ability of Zap-70 to undergo tyrosine phosphorylation and associate with TCR was enhanced by aggregation of TCR with the CD4 co-receptor. Further studies allowed the identification of two distinct pools of tyrosine-phosphorylated Zap-70 in activated T-cells. While one population was associated with TCR, the other was co-immunoprecipitated with a 120-kDa tyrosine-phosphorylated protein of unknown identity. In addition to supporting the notion that Src-related enzymes regulate the recruitment of Zap-70 in TCR signaling, these data added further complexity to previous models of regulation of Zap-70. Furthermore, they suggested that p120 may be an effector and/or a regulator of Zap-70 in activated T-lymphocytes.  相似文献   

6.
The inhibition of tyrosine kinases involved in growth factor signal transduction pathways represents an attractive strategy for controlling aberrant cellular growth. Over the last 4-5 years, there have been numerous reports on the discovery of small molecule inhibitors for potential therapeutic applications to a number of proliferative diseases, principally cancer and restenosis, where the over-expression of certain tyrosine kinases has been demonstrated. These include, amongst others, the platelet-derived growth factor receptor, the fibroblast growth factor receptor, and the nonreceptor c-Src tyrosine kinase. This review compiles published reports and patent filings from 1995 to mid-1997 that include data directly related to inhibition of the platelet-derived growth factor receptor, fibroblast growth factor receptor, and Src family tyrosine kinases. Potential clinical applications for selected classes of tyrosine kinase inhibitors reviewed herein will likely depend on the demonstration of meaningful activity in a variety of therapeutic targets in animal models.  相似文献   

7.
Engagement of immunoreceptors in hemopoietic cells leads to activation of Src family tyrosine kinases as well as Syk or ZAP-70. Current models propose that Src family kinases are critical in immune response signal transduction through their role in phosphorylation of tyrosine residues within immunoreceptor tyrosine activation motifs (ITAMs; which recruit the SH2 domains of Syk or ZAP-70) and by direct phosphorylation of Syk and ZAP-70. Several lines of evidence suggest that Syk may not show the same dependence on activation by Src family kinases as ZAP-70. In this report, we used COS cells transiently transfected with components of the Fc epsilon RI complex (Lyn, Syk, and a chimeric CD8 receptor containing the cytoplasmic domain of the gamma subunit of Fc epsilon RI (CD8-gamma)) to examine the regulation of Syk activity. Syk was activated and phosphorylated in COS cells cotransfected with Lyn; however, in cells expressing CD8-gamma, activation of Syk and phosphorylation of CD8-gamma did not require coexpression of Lyn. Additional experiments indicate that gamma phosphorylation is dependent on Syk kinase activity and is independent of endogenous COS cell kinases. In parallel experiments, ZAP-70 was not activated by cotransfection with CD8-gamma, nor was CD8-gamma phosphorylated when coexpressed with ZAP-70 alone. Taken together, these studies indicate that Syk can be distinguished from ZAP-70 in its ability to be activated by coexpression with an ITAM-containing receptor without coexpression of a Src family kinase, and that Syk is capable of phosphorylating ITAM tyrosines under certain experimental conditions.  相似文献   

8.
Hck and Src are members of the Src family of protein- tyrosine kinases that carry out distinct and overlapping functions in vivo (Lowell, C. A., Niwa, M., Soriano, P., and Varmus, H. E. (1996) Blood 87, 1780-1792). In an attempt to understand how Hck and Src can function both independently and in concert, we have compared 1) their in vitro substrate specificity and 2) the accessibility of their Src homology 2 (SH2) domain. Using several synthetic peptides, we have demonstrated that Hck and Src recognize similar structural features in the substrate peptides, suggesting that both kinases have the intrinsic ability to carry out overlapping cellular functions by phosphorylating similar cellular proteins in vivo. Using a phosphotyrosine-containing peptide that has previously been shown to bind the SH2 domain of Src family kinases with high affinity, we found that although Src could bind to the phosphopeptide, Hck showed no interaction. The inability of Hck to bind the phosphopeptide was not a result of a stable intramolecular interaction between its SH2 domain and C-terminal regulatory phosphotyrosine residue (Tyr-520), as most Hck molecules in the purified Hck preparation were not tyrosine-phosphorylated. In contrast to intact Hck, a recombinant truncation analog of Hck was able to bind the phosphopeptide with an affinity similar to that of the Src SH2 domain, suggesting that conformational constraints are imposed on intact Hck that limit accessibility of its SH2 domain to the phosphopeptide. Furthermore, the difference in SH2 domain accessibility is a potential mechanism that enables Src and Hck to perform their respective unique functions by 1) targeting them to different subcellular compartments, whereupon they phosphorylate different cellular proteins, and/or 2) facilitating direct binding to their cellular substrates.  相似文献   

9.
Cross-linking of the T cell antigen receptor (TCR)-CD3 complex induces rapid tyrosine phosphorylation and activation of Src (Lck and Fyn) and Syk (Syk and Zap-70) family protein tyrosine kinases (PTKs) which, in turn, phosphorylate multiple intracellular substrates. Cbl is a prominent PTK substrate suggesting a pivotal role for it in early signal transduction events. However, the regulation of Cbl function and tyrosine phosphorylation in T cells by upstream PTKs remains poorly understood. In the present study, we used genetic and biochemical approaches to demonstrate that Cbl directly interacts with Syk and Fyn via its N-terminal and C-terminal regions, respectively. Tyr-316 of Syk was required for the interaction with Cbl as well as for the maximal tyrosine phosphorylation of Cbl. However, both wild-type Syk and Y316F-mutated Syk phosphorylated equally well the C-terminal fragment of Cbl in vivo, suggesting the existence of an alternative, N terminus-independent mechanism for the Syk-induced tyrosine phosphorylation of Cbl. This mechanism appears to involve Fyn, since, in addition to its association with the C-terminal region of Cbl, Fyn also associated with Syk and enhanced the Syk-induced tyrosine phosphorylation of Cbl. These findings implicate Fyn as an adaptor protein that facilitates the interaction between Syk and Cbl, and suggest that Src and Syk family PTKs coordinately regulate the tyrosine phosphorylation of Cbl.  相似文献   

10.
All Src family non-receptor tyrosine kinases are negatively regulated by phosphorylation at a carboxy-terminal tyrosine. To analyze the significance of this regulation during development, we have generated mice deficient in Csk, a kinase that phosphorylates this tyrosine, by gene targeting in embryonic stem cells. Homozygous mutant embryos exhibit a complex phenotype that includes defects in the neural tube and die between day 9 and day 10 of gestation. Cells derived from these embryos exhibit an order of magnitude increase in activity of Src and the related Fyn kinase. Phosphorylation at the carboxy-terminal tyrosine of Src was reduced but not eliminated and was accompanied by increased phosphorylation at another key tyrosine residue. These results demonstrate that Src family kinase activity is critically dependent on phosphorylation by Csk and suggest that the regulation of kinase activity may be essential during embryogenesis.  相似文献   

11.
TCR stimulation results in the tyrosine phosphorylation of a number of cellular substrates. We have recently identified a 70-kDa protein tyrosine kinase, ZAP-70, which associates with the human TCR zeta-chain after TCR stimulation. We report here the isolation and sequence of a cDNA clone that encodes murine ZAP-70. Murine and human ZAP-70 share 93% amino acid identity and are homologous to the 72-kDa protein tyrosine kinase Syk. Syk has been implicated in the signal transduction pathways of the B cell membrane Ig and high affinity IgE receptors, Fc epsilon RI. In addition, we examined the tissue distribution of ZAP-70 and Syk in human and murine thymocyte subsets, B cells, and peripheral T cell subsets. ZAP-70 protein is expressed in all major thymocyte populations, with the level of expression being comparable to that found in both CD4+ and CD8+ peripheral T cells. Although Syk protein is also present in all thymocyte subsets, expression of Syk protein is down-regulated threefold to fourfold in peripheral T cells. In contrast to ZAP-70, expression of Syk is 12- to 15-fold higher in peripheral B cells when compared with peripheral T cells. In addition, whereas T cell stimulation results in down-regulation of Lck, no significant change in ZAP-70 or Syk protein is detected. Finally, we provide evidence that both ZAP-70 and Syk can associate with the TCR after TCR stimulation. With the use of a heterologous expression system, we show that, like ZAP-70, Syk is dependent upon a Src-family protein tyrosine kinase for association with the phosphorylated zeta-chain. Thus, the differential expression of these kinases suggests the possibility of different roles for ZAP-70 and Syk in TCR signaling and thymic development.  相似文献   

12.
Stimulation through the TCR is known to induce tyrosine phosphorylation of a number of proteins, which leads to functional activation of T cells. Identification of the substrates that become phosphorylated and defining their interactions with other signaling molecules will provide insight into the mechanisms controlling T cell activation. Focal adhesion kinase (FAK) and the recently described Pyk2 kinase are homologous members of a non-receptor protein tyrosine kinase family. FAK has been shown to become phosphorylated upon TCR stimulation, but its role, if any, in T cell activation remains to be defined. Although Pyk2 has been shown to play a role in neuronal cell activation stimulated through G-protein-coupled receptors, a role in T cell activation has not been described. In this study we show that FAK and Pyk2 are two of the major 115-to-120-kDa proteins that become tyrosine phosphorylated in T cells following TCR complex stimulation. Furthermore, coincident with the increase in tyrosine phosphorylation, we show an association of these kinases with the SH2 domain of the tyrosine kinase Lck in vivo. The increase in tyrosine phosphorylation of both FAK and Pyk2, however, occurs in Lck-deficient cells suggesting that phosphorylation of both of these kinases does not require Lck. Taken together, these results suggest that FAK and Pyk2, perhaps in coordination with Lck, play a role in T cell activation.  相似文献   

13.
While level of school education has been related to prevalence of cigarette smoking in a number of studies, less information is available on the role of vocational education and related occupational contexts. This study analyses the relative contribution of different types of educational experience to explaining prevalence and intensity of cigarette smoking in a large sample of female and male vocational trainees in Germany. A standardized questionnaire on smoking behaviour and educational performance was applied in 27 educational centers across the country, covering a total of 20,527 respondents (77.3% of the original sample; women: 59.5%, men: 40.5%). Bivariate analysis revealed a high prevalence of current smokers among vocational trainees, both men (51.2%) and women (49.4%). Men were more likely to be heavy smokers, especially with increasing age. In both sexes, prevalence of smoking was particularly high in the following occupational groups: hairdressers, butchers, painters, service personnel (hotels, restaurants), shop assistants/sellers and cooks. Multivariate analysis taking educational level, type of vocational training (occupation), age, sex and urban-rural background into account revealed the highest prevalence odds ratios (POR) of smoking in subjects with the lowest educational level (POR = 5.19 for men and 4.56 for women). Even stronger effects were observed with smoking intensity (> or = 20 cigarettes/day): in men with the lowest educational level the risk of being a heavy smoker was 8.92, and in women 13.54 compared to subjects with a high-school leaving qualification. Poor school education must be considered the relatively strongest predictor of prevalence and intensity of cigarette smoking in a large sample of female and male vocational trainees. Preventive efforts should be directed at specific target groups such as those identified by this study.  相似文献   

14.
Spectrin is a widely expressed protein with specific isoforms found in erythroid and nonerythroid cells. Spectrin contains an Src homology 3 (SH3) domain of unknown function. A cDNA encoding a candidate spectrin SH3 domain-binding protein was identified by interaction screening of a human brain expression library using the human erythroid spectrin (alphaI) SH3 domain as a bait. Five isoforms of the alphaI SH3 domain-binding protein mRNA were identified in human brain. Mapping of SH3 binding regions revealed the presence of two alphaI SH3 domain binding regions and one Abl-SH3 domain binding region. The gene encoding the candidate spectrin SH3 domain-binding protein has been located to human chromosome 10p11.2 --> p12. The gene belongs to a recently identified family of tyrosine kinase-binding proteins, and one of its isoforms is identical to e3B1, an eps8-binding protein (Biesova, Z., Piccoli, C., and Wong, W. T. (1997)Oncogene 14, 233-241). Overexpression of the green fluorescent protein fusion of the SH3 domain-binding protein in NIH3T3 cells resulted in cytoplasmic punctate fluorescence characteristic of the reticulovesicular system. This fluorescence pattern was similar to that obtained with the anti-human erythroid spectrin alphaI SigmaI/betaI SigmaI antibody in untransfected NIH3T3 cells; in addition, the anti-alphaI SigmaI/betaI SigmaI antibody also stained Golgi apparatus. Immunofluorescence obtained using antibodies against alphaI SigmaI/++betaI SigmaI spectrin and Abl tyrosine kinase but not against alphaII/betaII spectrin colocalized with the overexpressed green fluorescent protein-SH3-binding protein. Based on the conservation of the spectrin SH3 binding site within members of this protein family and published interactions, a general mechanism of interactions of tyrosine kinases with the spectrin-based membrane skeleton is proposed.  相似文献   

15.
Src family tyrosine kinases have been implicated in the adhesion-dependent activation of neutrophil functions (Yan, S. R., Fumagalli, L., and Berton, G. (1995) J. Inflamm. 45, 297-312; Lowell, C. A., Fumagalli, L., and Berton, G. (1996) J. Cell Biol. 133, 895-910). Because the activity of tyrosine kinases can be affected by oxidants, we investigated whether reactive oxygen intermediates (ROI) produced by adherent neutrophils regulate Src family kinase activities. Inhibition of ROI production by diphenylene iodonium, an inhibitor of NADPH oxidase, or degradation of H2O2 by exogenously added catalase inhibited the adhesion-stimulated activities of p58(c-fgr) and p53/56(lyn). In addition, adhesion-stimulated p58(c-fgr) and p53/56(lyn) activities were greatly reduced in neutrophils from patients with chronic granulomatous disease (CGD) that are deficient in the production of ROI. Exogenously added H2O2 increased p58(c-fgr) and p53/56(lyn) activities in nonadherent neutrophils. Although ROI regulated the activities of p58(c-fgr) and p53/56(lyn), they did not affect the redistribution of the two kinases to a Triton X-100-insoluble, cytoskeletal fraction that occurs in adherent neutrophils. Tyrosine phosphorylation of proteins in adherent, CGD neutrophils was only partially inhibited, suggesting that the full activation of p58(c-fgr) and p53/56(lyn), which depends on endogenously produced ROI, does not represent an absolute requirement for protein tyrosine phosphorylation. The adhesion-stimulated activity of the tyrosine kinase p72(syk) was not affected by catalase in normal neutrophils, and it was comparable in normal and CGD neutrophils. These findings suggest that ROI endogenously produced by adherent neutrophils regulate Src family kinases activity selectively and establish the existence of a cross-talk between reorganization of the cytoskeleton, production of ROI, and Src family tyrosine kinase activities in signaling by adhesion.  相似文献   

16.
Neisseria elongata subsp. glycolytica strain 6171/75 is closely similar to the type strain of N. elongata, M2, as regards DNA base composition, fatty acid content and electrophoretic mobility of two glutamate dehydrogenases, one of which showed a reaction of identity with the corresponding enzyme from M2 in double immunodiffusion in agar. The strain showed genetic homologies with strain M2 in genetic transformation at a level suggesting species identity, and with N. meningitidis at a lower level. No affinity to Moraxella species or "false neisseriae" was demonstrated, with the exception of a production of a few transformants in the 6171/75 recipient by DNA from Kingella kingae. The strain showed the same pattern of associated variation of colony type, fimbriation and competence in transformation as that found in other Neisseria and Moraxella species. After continuous subcultivation for some time some clones of the strain appeared to have lost the ability to produce acid from glucose.  相似文献   

17.
The nimA gene encodes a protein-serine/threonine kinase that is required along with the p34cdc2 kinase for mitosis in Aspergillus nidulans. We have searched for human protein kinases that are related to the NIMA protein kinase using the polymerase chain reaction. Different pairs of degenerate oligonucleotides specific for conserved amino acid motifs in the catalytic domain of NIMA were used as primers in the polymerase chain reaction to amplify partial complementary DNAs (cDNAs) of protein kinases expressed in the promyelocytic leukemia cell line HL-60. Forty-one distinct cDNAs representing a broad spectrum of serine/threonine- and tyrosine-specific protein kinases were identified, and the sequences for 21 of these protein kinases were found to be unique. Three of these cDNAs represent a family of protein kinases whose members are related to NIMA and the murine nimA-related protein kinase Nek1. We discuss the success of this polymerase chain reaction approach with respect to the use of multiple primer pairs, the influence of primer degeneracy, and the tolerance of cDNA amplification to mismatches between primers and template mRNA.  相似文献   

18.
Src kinases and protein kinase C (PKC) have been well studied for their role in oncogenic and normal cellular processes. Herein we report on a novel regulatory pathway mediated by the interaction of PKC-delta with p53/56Lsy (Lyn) and with p60Src (Src) that results in the phosphorylation and increased activity of Lyn and Src. In the RBL-2H3 mast cell line, the interaction of PKC-delta with Lyn required the activation of the high affinity receptor for IgE (FcsigmaRI) while the interaction with Src was constitutive. Increased complex formation of PKC-delta with Lyn or Src led to increased serine phosphorylation and activity of the Src family kinases. Conversely, Lyn was found to phosphorylate Lyn-associated and recombinant PKC-delta in vitro and the tyrosine 52 phosphorylated PKC-delta was recruited to associate with the Lyn SH2 domain. The constitutive association of PKC-delta with Src did not result in the tyrosine phosphorylation of PKC-delta prior to or after FsigmaRI engagement. However in cells over-expressing PKC-delta, FsigmaRI engagement resulted in the dramatic inhibition of Src activity and some inhibition of Lyn activity. Thus, the interaction and cross-talk of PKC-delta with Src family kinases suggests a novel and inter-dependent mechanism for regulation of enzymatic activity that may serve an important role in cellular responses.  相似文献   

19.
The actin filament-associated protein AFAP-110 forms a stable complex with activated variants of Src in chick embryo fibroblast cells. Stable complex formation requires the integrity of the Src SH2 and SH3 domains. In addition, AFAP-110 encodes two adjacent SH3 binding motifs and six candidate SH2 binding motifs. These data indicate that both SH2 and SH3 domains may work cooperatively to facilitate Src/AFAP-110 stable complex formation. As a test for this hypothesis, we sought to understand whether one or both SH3 binding motifs in AFAP-110 modulate interactions with the Src SH3 domain and if this interaction was required to present AFAP-110 for tyrosine phosphorylation by, and stable complex formation with, Src. A proline to alanine site-directed mutation in the amino terminal SH3 binding motif (SH3bm I) was sufficient to abrogate absorption of AFAP-110 with GST-SH3STC. Co-expression of activated Src (pp60(527F)) with AFAP-110 in Cos-1 cells permit tyrosine phosphorylation of AFAP-110 and stable complex formation with pp60(527F). However, co-expression of the SH3 null-binding mutant (AFAP71A) with pp60(527F) revealed a 2.7 fold decrease in steady-state levels of tyrosine phosphorylation, compared to AFAP-110. Although a lower but detectable level of AFAP71A was phosphorylated on tyrosine, AFAP71A could not be detected in stable complex with pp60(527F), unlike AFAP-110. These data indicate that SH3 interactions facilitate presentation of AFAP-110 for tyrosine phosphorylation and are also required for stable complex formation with pp60(527F).  相似文献   

20.
The Eph family of receptors, the largest subgroup within the tyrosine protein kinase receptor family, are comprised of at least thirteen members, many of which are predominantly expressed in the developing and adult nervous system. In this study, we have isolated a full-length cDNA, encoding the mouse homologue of a previous partially characterized Eek protein, a member of Eph receptor tyrosine kinase family. In a comparison of the amino acid sequences of various Eph family members, Eek is most similar to Ehk-3/MDK1, Sek/Cek8, Ehk-2, Hek/Mek4/Cek4, and Bsk/Ehk1/Rek7/Cek7, which are predominantly expressed in the nervous system. Additionally, we have used a low-stringency PCR cloning technique to identify ligands, related to B61, that may interact with Eek. Three different GPI-linked ligands, namely Elf-1/Cek7-L, Ehk1-L/Efl-2/Lerk3 and AL-1/RAGS, were isolated from mouse brain. To study the functional interactions between these ligands and the Eek receptors, we have constructed chimeric ligands consisting of the Fc portion of human IgG fused to their carboxyl-terminus. These chimeric ligands bound to, and activated both the Eek receptors and the Eek-TrkB chimeric receptors expressed in NIH3T3 cells. These findings suggest that Eek receptor can be activated by at least three different GPI-linked ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号