首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
长玻璃纤维增强尼龙66力学性能的研究   总被引:1,自引:0,他引:1  
采用自行研制的熔体浸渍包覆长玻纤装置,制备了长玻纤增强尼龙66(LFT-PA66)复合材料.研究了玻纤用量、预浸料粒料长度和相容剂聚丙烯接枝马来酸酐(PP-G-MAH)对长纤维增强尼龙66的拉伸强度和冲击强度的影响.结果表明:长玻纤增强尼龙66的力学性能明显优于短玻纤增强尼龙66(SFT-PA66),相容剂PP-G-MAH的加入增强了界面黏结强度,提高了长玻纤增强尼龙66复合材料的拉伸强度和冲击强度.  相似文献   

2.
专利摘要     
《玻璃纤维》2010,(4):51-51
申请号:200810020937 发明名称:长玻璃纤维增强聚丙烯材料的成套生产设备.申请人:苏州工业园区和昌电器有限公司 本发明涉及长玻璃纤维增强聚丙烯材料的成套生产设备,包括长玻纤预热装置、长玻纤表面处理装置、浸渍装置和集束包覆装置,长玻纤预热装置与长玻纤表面处理装置过渡衔接,长玻纤表面处理装置与浸渍装置过渡衔接,浸渍装置与集束包覆装置过渡衔接;长玻纤表面处理装置包括变径压辊和液态偶联剂雾化装置;  相似文献   

3.
增强尼龙中玻纤长度及其分布对性能的影响   总被引:2,自引:0,他引:2  
以玻纤填充质量分数为30%玻纤增强尼龙6为例,分析和研究了玻璃纤维长度及其分布对增强尼龙6主要性能的影响。结果表明:玻璃纤维的平均长度越长,增强尼龙6的拉伸强度越大,但熔体流动速率下降;玻璃纤维的分布越均匀,缺口悬臂梁冲击强度越大;而弯曲模量与纤维最大长度成正比关系。  相似文献   

4.
用玻璃纤维对MC尼龙复合材料进行改性,研究了玻璃纤维含量及长度对MC尼龙复合材料力学性能的影响。结果表明:玻纤含量50%的MC尼龙同玻纤含量40%的MC尼龙相比,冲击强度、拉伸强度、弯曲强度分别提高29.63%、5.43%,6.47%;MC尼龙复合材料的拉伸强度、弯曲强度及冲击强度随玻璃纤维长度的增长而增加,玻纤的长度越长,MC尼龙复合料力学性能提升效果越好;MC尼龙复合材料弯曲强度与玻纤重均长度为正相关关系,随着玻纤重均长度增大而增大。  相似文献   

5.
采用熔融共混法制备了尼龙66/玻璃纤维复合材料,用示差扫描量热法研究了玻纤含量对尼龙66材料的结晶行为,以及对力学性能和热变形温度的研究.结果表明:玻纤的加入对尼龙66熔点影响不大,而结晶度降低;结晶峰值温度θc升高,过冷度△D降低;玻纤增强尼龙66体系的力学性能得到了明显改善,热稳定性也得到了明显提高.  相似文献   

6.
王爱民  刘云飞  罗道友  郝炜 《塑料》2004,33(6):37-40
为克服红磷直接应用于玻纤增强尼龙66中的缺点,研究了用原位聚合法制备微胶囊红磷的工艺,测试了样品的吸湿性以及表面包覆性能,并研究了其用于玻纤增强尼龙66的阻燃性能和力学性能。结果表明,制得的微胶囊化红磷应用于玻纤增强尼龙66中,不仅具有优良的阻燃性能(FV 0级),而且力学性能比单独应用红磷有所提高,加工工艺性能有较大幅度的提高。  相似文献   

7.
制备了不同黏度的尼龙6或尼龙66与不同直径的玻纤的共混物,对玻纤增强尼龙材料的熔接痕强度进行了研究。结果表明:使用相对黏度为2.4的尼龙6或2.4的尼龙66,其熔接痕都要比相对黏度为2.7的尼龙6或2.7的尼龙66高;在相同黏度尼龙6或尼龙66体系中,使用10μm直径玻纤要比使用13μm直径玻纤的熔接痕强度高。同时从扫描电镜可知:尼龙树脂对直径为10μm玻纤的包覆,要优于对直径为13μm玻纤的包覆。  相似文献   

8.
为改善长玻璃纤维(简称长玻纤)增强聚氨酯合成轨枕复合材料的制备工艺,提高材料力学性能,在240 mm×80 mm的模腔内对聚氨酯材料进行拉挤成型实验,结果表明:随长玻纤含量增加,材料的弯曲强度增加,在w(长玻纤)为65%时达到最大;竖向压缩强度在w(长玻纤)为70%时达到最大;当w(长玻纤)增加7.5%时,材料的冲击韧性增加12%;当w(长玻纤)增加9.8%时,材料吸水量降低62.23%。提高长玻纤的含量减小了微孔容积,且形成了以长玻纤为中心的柱体结构,有利于复合材料力学性能的提升。  相似文献   

9.
对比了不同黏度尼龙66 (PA66)树脂、表面不同处理方式的玻璃纤维以及一些特殊添加剂对30%玻纤增强尼龙66流动性及表面光泽度的影响.结果表明:低黏树脂、前处理的玻纤对30%玻纤增强PA66的流动性及表面光泽度的改善效果最佳;材料的流动性和表面光泽度随流动改性剂AM的加入显著提高,且当其质量分数为1%时,材料综合性能最好;有机成核剂的加入有效提高30%玻纤增强PA66的流动性及表面光泽度.  相似文献   

10.
将玻纤增强尼龙66(PA66)和增韧剂通过双螺杆熔融共混挤出,制备增强增韧尼龙66复合材料。研究了三种增韧剂的加入量对尼龙66/玻璃纤维复合材料的拉伸强度、冲击强度及弯曲强度等力学性能的影响。实验结果表明:随着玻璃纤维含量的增加,共混体系的拉伸强度有大幅度的提高;随着增韧剂加入量的增加,尼龙66/玻璃纤维复合材料的拉伸强度和弯曲强度降低,冲击强度提高。增韧剂CMG9802的增韧效果优于另外两个增韧剂。  相似文献   

11.
正专利名称:玻纤增强耐高温低吸湿尼龙复合材料申请公布号:CN108148408A申请公布日:2018.06.12本发明公开了玻纤增强耐高温低吸湿尼龙复合材料,按质量份计,其制备原料为:尼龙66~100份,SEBS 5~10份,双层聚合物包覆纳米羟基磷灰石50~80份,玻璃纤维20~60份,硅烷偶联剂KH-550 5~10份,环糊精1~10份,乙撑双硬脂酰胺1~5份,季戊四醇硬脂酸酯1~5份,二辛酯基季戊四醇二亚磷酸酯1~3份,以  相似文献   

12.
《塑料》2014,(2)
采用熔体浸渍工艺制备了长玻纤增强聚甲醛共聚物复合材料,研究了不同玻纤含量对长玻璃纤维增强聚甲醛复合材料力学、动态力学性能和形态的影响。结果表明:随着玻纤含量的增加,长玻璃纤维增强聚甲醛复合材料的力学和动态力学性能逐渐增加;SEM图片可以看出玻璃纤维在基体树脂中具有良好的分散性。  相似文献   

13.
以SEBS(氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物)和SEBS-g-MAH(马来酸酐接枝SEBS)为基体树脂、白油为增塑剂、滑石粉为填料和环氧树脂(EP)为改性剂,利用双螺杆挤出机共混挤出包覆料;然后以玻璃纤维增强尼龙6为被包覆料,采用二次注塑法将包覆料包覆在尼龙板上。通过单因素试验法优选出制备包覆料的较佳工艺条件。结果表明:当w(SEBS)=100%、w(SEBS-g-MAH)=30%、w(白油)=100%和w(滑石粉)=100%时,包覆料具有粘接力强、硬度适中、流动性较好和价格适宜等特点,并且EP的引入使包覆料的粘接机制发生了变化。  相似文献   

14.
在自制装置中用硅烷偶联剂KH550对长玻纤(LGF)进行表面处理后,采用熔融共混法制备了尼龙66/长玻纤复合材料。采用微机全自动热膨胀系数测定仪记录了玻纤增强尼龙66复合材料的热膨胀曲线,分析了玻纤含量、温度对复合材料热膨胀系数的影响,结果表明,随着玻纤含量的增加,复合材料的热膨胀系数显著下降,最大降低了74.2%;随着温度的升高,复合材料的热膨胀系数先增大后减小最后趋于平衡,转折温度在37℃左右。测试了复合材料的力学性能,结果显示复合材料的拉伸强度、弯曲强度和缺口冲击强度随玻纤含量的增加而大幅度提高,最大分别增加了173%、186%和283%。通过扫描电镜观察到玻纤嵌入尼龙66基体中,与尼龙66形成了良好的界面黏结。  相似文献   

15.
国外动态     
《塑料工业》2004,32(5)
长玻纤耐热尼龙  DuPont工程聚合物公司推出的长玻纤尼龙配混料是一种含5 0 %玻纤的耐高温芳香族尼龙。有润滑作用及热稳定性的ZytelHTN5 1LG5 0HSL已被GateSkate公司用于生产长0 5 3 3m的底盘和全地形冰鞋。DuPont称长玻纤增强对改进抗疲劳和抗冲击性能是必不可少的。这种配混料的拉伸模量达18GPa ,Charpy缺口冲击强度70kJ/m2 。DuPont称将根据市场需要把长玻纤增强延伸到别的HTN品级及别的尼龙品种。Anon PlastTechnol,2 0 0 4,5 0 ( 3 )PEEK在无铅焊接方面挑战PPS  受到法规偏爱的电子和半导体器件无铅焊接技术被Vict…  相似文献   

16.
玻纤增强尼龙66产品性能差异原因分析   总被引:1,自引:0,他引:1  
通过用差示扫描量热仪(DSC)和扫描电镜(SEM)对2种性能存在较大差异的尼龙66(PA66)产品进行测量和观察,测试结果表明2种产品性能差异是由于基体的结晶度、增强玻纤(玻璃纤维)在PA66中的分布均匀性以及基体和玻纤之间的相容性造成的。  相似文献   

17.
使用短切纱玻璃纤维和尼龙66(PA66),采用侧方喂料方式添加并熔融挤出制备高玻纤含量的增强PA66复合材料。对复合材料的力学性能进行测试,观察各玻纤含量材料注塑成型样板表面状况,利用扫描电子显微镜(SEM)对使用30%、50%玻纤增强PA66复合材料的冲击断面扫描,采用示差扫描量热(DSC)法测试使用45%、50%玻纤增强PA66复合材料的熔融峰。结果表明,50%玻纤增强尼龙66材料的拉伸强度、弯曲强度、弯曲模量、冲击强度均最高,SEM扫描显示50%玻纤含量材料纤维结合效果良好,但样板表面光洁度相对最差,材料熔融峰较45%玻纤含量PA66增加3.18℃。制得的50%高玻纤含量PA66复合材料可以应用于高耐热、高强度及对表面光洁度要求不高的结构部件。  相似文献   

18.
《塑料科技》2017,(10):25-29
采用熔体浸渍包覆长玻璃纤维装置制备了长玻纤增强聚丙烯(PP/LFT)复合材料,通过双螺杆挤出机制备了同等配比的短玻纤增强聚丙烯(PP/SFT)复合材料。研究了增容剂含量、预浸料颗粒长度以及加工工艺对玻纤增强聚丙烯(PP/GF)复合材料力学性能的影响。结果表明:PP/LFT复合材料的力学性能明显优于PP/SFT复合材料,其拉伸强度及缺口冲击强度分别可达115.0 MPa和42.4 kJ/m~2;增容剂马来酸酐接枝聚丙烯(PP-g-MAH)的加入明显改善了GF与PP间的界面黏结强度,进一步提升了复合材料的力学性能,相比之下,增容剂对PP/SFT复合材料的性能提升效果更为明显;提高预浸料颗粒长度有利于复合材料纤维保留长度和力学性能的提升;适度提高加工温度,可进一步提高浸渍效果和复合材料的力学性能。  相似文献   

19.
玻纤、粉煤灰增强MC尼龙复合材料的研究   总被引:1,自引:0,他引:1  
闫杰  熊党生 《塑料工业》2004,32(12):14-15,32
利用铸型尼龙(MC尼龙)静态浇铸的原理,通过阴离子聚合制得了玻纤、粉煤灰增强MC尼龙。研究了不同玻纤和粉煤灰质量分数对复合材料性能的影响。结果表明,用这种方法制得的玻纤、粉煤灰增强MC尼龙的机械性能较普通MC尼龙有较大幅度提高,纤维在基体中的分散性好,与基体的粘接性也相当好;加入30%玻璃纤维和10%粉煤灰可使复合材料的拉伸强度提高13.8%、弯曲强度提高32.8%、弯曲弹性模量提高110%、无缺口冲击韧性提高442%、而硬度提高49.6%。  相似文献   

20.
池窑法玻璃纤维增强PA66性能研究   总被引:2,自引:0,他引:2  
刘广建  靳艳英  张西洋 《塑料》2005,34(2):56-58
以池窑法生产的高强玻璃纤维(短切处理过)为改性填料,对尼龙66进行共混改性。结果表明:尼龙66/玻纤复合材料的拉伸强度、弯曲强度、硬度、冲击强度等性能都有了显著提高,其中拉伸强度提高了69%、弯曲强度提高了112%、硬度提高了14%、冲击强度提高了11%,但是材料的断裂伸长率却随玻纤含量的增加而降低。通过分析得出玻纤的最佳含量为30%左右。简要介绍了池窑法生产的玻璃纤维的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号