首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
试样采用硝酸、氢氟酸、硫酸溶解挥硅,剩余不溶物经过滤、灰化、灼烧,再以碳酸锂和硼酸熔融,以盐酸酸化。建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定铝硅质耐火材料中氧化铁、氧化钛、氧化钙、氧化钾、氧化镁、氧化钠含量的测定方法。用本方法进行加标回收试验,回收率为96.8%~104.0%;进行标准样品测定试验,测定值与认定值一致,重复测定的相对标准偏差(RSD,n=10)均小于2%。  相似文献   

2.
将样品经逆王水和溴水浸泡溶解、蒸干后,用硝酸溶解其中的盐类,再用电感耦合等离子体发射光谱法(ICP-AES)测定萤石中硫、铁、磷的含量。测定结果显示,在选定条件下,硫的检出限为0.013μg/m L,铁的检出限为0.004μg/m L,磷的检出限为0.012μg/m L。分析萤石标准样品(YSB14796)测定值,并将测定值与实际样品(1号)进行精密度和回收率实验。分析和实验结果显示:萤石标准样品(YSB14796)测定值与参考值一致;硫、铁、磷精密度(RSD)均小于5.0%,加标回收率在97.0%~109.3%之间。  相似文献   

3.
石灰石、白云石样品与混合熔剂(Li2B4O7-LiBO2-LiBr)稀释比为1∶8,硝酸锂做氧化剂、950 ℃熔融20 min制备玻璃片,应用X射线荧光光谱法(XRF)测定石灰石、白云石中氧化钙、氧化镁、二氧化硅、三氧化二铝、三氧化二铁、氧化锰、磷、硫、二氧化钛、氧化锶、氧化钾和氧化钠12种组分。通过标准样品、光谱纯物质、标准样品与标准溶液合成样品及化学定值样品制作校准曲线并进行分段回归。应用康普顿散射线校正铁、锰、锶元素,经验系数法校正其他9种元素,可有效克服石灰石、白云石中各组分测定时基体效应的影响。对样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)在0.18%~11.4%之间。对标准样品及未知样品进行正确度考察,测定值与认定值或湿法值一致。  相似文献   

4.
熔融制样-X射线荧光光谱法测定萤石中主次成分   总被引:1,自引:0,他引:1       下载免费PDF全文
X射线荧光光谱法测定萤石中主次成分,需要解决准确测定氟含量的难题。试验采用无水四硼酸锂和碳酸锂混合熔剂,硝酸钠为氧化剂进行熔融制样,实现了X射线荧光光谱(XRF)对萤石中各组分含量的准确测定。探讨了熔融温度、稀释比、熔融时间等因素对氟含量测定的影响,确定了最佳试验条件。试验表明,当无水四硼酸锂与试样质量比(m无水四硼酸锂:m试样)为4:1、碳酸钠质量为0.500 0 g、硝酸钠质量为0.500 0 g、熔融温度为980 ℃、熔融时间为8 min时,氟、硫元素的损耗最小,且氟的荧光强度最大。在最佳试验条件下,得到氟化钙、二氧化硅、硫、磷含量测定的线性相关系数均达到0.995以上。对萤石标准样品进行精密度考察,氟化钙、磷、二氧化硅、硫测定结果的相对标准偏差(RSD,n=11)分别为0.31%、3.6%、0.72%、0.92%;采用实验方法测定萤石标准样品和实际样品,其测定值与认定值或湿法值一致,符合常规检测要求。  相似文献   

5.
杜米芳 《冶金分析》2017,37(4):71-75
使用盐酸-硝酸-氢氟酸以及微波消解的方式溶解镍基合金样品,选择Si 251.611 nm或Si 288.158 nm为分析线,Ar 420.069 nm为内标元素谱线,并用两点校正法扣除背景,采用基体匹配法配制标准溶液系列并绘制校准曲线以消除基体效应的影响,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基合金中硅的分析方法。硅质量分数在0.008%~5.00%范围内(Si 251.611 nm),以及硅质量分数在0.015%~5.00%范围内(Si 288.158 nm)分别与其发射强度呈线性,相关系数均大于0.999;方法中硅的检出限不大于0.005%(质量分数)。方法应用于镍基合金样品中硅的测定,结果的相对标准偏差(RSD,n=10 )小于1%。按照实验方法测定镍基合金标准样品中硅,测定结果与认定值相吻合。  相似文献   

6.
刘烽  吴骋  吴广宇  俞璐  胡清  徐成 《冶金分析》2018,38(5):78-82
目前髙镍铸铁已广泛用于汽车发动机等产品上,对于材料中各元素的分析,传统化学分析方法已无法满足快速检测的需求。试验探讨了不同溶解方式的溶样效果,优选了王水并采用微波消解,冷却后在消解液中滴加氢氟酸的溶解方法,测定过程采用钇内标法进行检测,从而实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定高镍铸铁中硅、锰、磷、铬、镍、铜等元素的方法。在选定的仪器工作条件下,各元素的校准曲线线性相关系数均大于0.9999,各元素的检出限为0.0002%~0.0036%。实验方法用于高镍铸铁实际样品中硅、锰、磷、铬、镍、铜的测定,结果的相对标准偏差(RSD,n=8)为0.73%~5.0%;按照实验方法测定髙镍铸铁标准样品中硅、锰、磷、铬、镍、铜,结果与认定值相吻合。  相似文献   

7.
镍基合金耐蚀性优良,但难以溶解。实验使用盐酸-硝酸-氢氟酸并采用微波消解法消解样品,选择Si 288.158 nm、Cr 267.716 nm、B 249.678 nm为分析谱线,选用基体匹配法消除基体效应的影响,采用自动匹配法校正谱线干扰,并稀释溶液从而扩大铬元素的测定范围,建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基合金中硅、铬、硼的方法。硅在0.1%~2.0%(质量分数,下同)、铬在0.1%~2.0%、硼在0.01%~0.1%范围内,各元素发射强度与其质量分数呈线性关系,校准曲线的线性相关系数均不小于0.999 4,各元素检出限不大于0.000 2%。按照实验方法测定镍基合金样品中硅、铬、硼,结果的相对标准偏差(RSD,n=6)为0.70%~1.8%。方法应用于镍基合金标准样品的测定,测定结果与认定值相符。  相似文献   

8.
《四川冶金》2021,43(4)
电感耦合等离子体发射光谱法测高碳锰铁中硅含量是较为准确的方法,因高碳锰铁中碳含量一般在7%以上,所以样品的前处理普遍借助微波消解仪进行高温高压消解,未配备微波消解仪的实验室无法便捷地对样品进行前处理。实验使用硝酸与氢氟酸在常温下溶解样品,建立了电感耦合等离子体发射光谱法检测高碳锰铁中硅含量的分析方法。采用国家标准物质绘制检测曲线,通过实验确定:称样量0.1000 g时用20 ml(1+1)硝酸和5 ml氢氟酸溶解样品后过滤定容;在仪器设定的参数条件下,在推荐分析谱线212.412 nm处可得准确测定结果。实验结果显示:硅含量在0.073%~2.38%(质量分数)范围内,硅的检测强度与对应的质量分数呈线性关系,校准曲线的线性相关系数r为0.9999。按照实验方法测定高碳锰铁合金有证标准物质中硅,测定值与标准值的误差均符合国家标准要求。有效解决了高碳锰铁样品前处理依赖微波消解仪的问题,可用于高碳锰铁中硅含量的快速测定。  相似文献   

9.
通过优化微波消解条件,以电感耦合等离子法(ICP-AES)直接、同时测定70钛铁中硅、铝、锰、镍、钒、钼、铬、磷、铜的含量。对试样溶解方法、微波消解条件、基体干扰情况进行考察研究,测定各元素的检测限,并进行了精密度、准确度试验及加标回收试验。此方法先进可靠,分析周期短,一次分解样品可同时测定多个项目,适用于70钛铁的分析。  相似文献   

10.
EDTA滴定法测定萤石中氟化钙   总被引:1,自引:0,他引:1       下载免费PDF全文
王利杰  杨志强 《冶金分析》2018,38(12):69-74
萤石中氟化钙的含量是评定其质量等级最重要的指标,因此测定萤石中氟化钙的方法受到关注。采用EDTA滴定法测定试样中全钙的含量,并提出了一种测定试样中碳酸钙的方法,再由全钙和碳酸钙的含量计算得到萤石中氟化钙的含量。称取两份不同质量试样,用定量氯化钙-盐酸溶液浸取,以酚酞为指示剂,调节溶液pH值约为7,将这两份溶液定容到相同体积,静置一段时间待氟化钙溶解达到平衡,此时两份溶液中氟化钙溶解量一致、试剂空白一致。对两份溶液进行干过滤,采用EDTA滴定法测定两份溶液中全钙的质量差(以碳酸钙计),此差值即称样量差中所含的碳酸钙质量。采用实验方法测定萤石标准样品和生产试样中全钙、碳酸钙和氟化钙含量,全钙测定结果与标准样品认定值或标准方法GB/T 5195.1—2006测定值相符,相对标准偏差(RSD,n=5)在0.11%~0.23%之间;碳酸钙测定结果与标准样品认定值或标准方法GB/T 5195.2—2006测定值相符,碳酸钙质量分数不小于0.30%的试样,相对标准偏差(RSD,n=5)在4.9%~7.6%之间,碳酸钙质量分数小于0.30%的试样,相对标准偏差(RSD,n=5)在12.6%~28.1%之间;氟化钙含量与认定值或上述两种标准方法测定后计算所得值基本相符,相对误差不大于0.40%。  相似文献   

11.
菱镁矿中镁、钙、硅、铁、铝、钾、钠、锰、钛、磷等10种主量元素含量范围相差较大,同时分析多元素比较困难。使用盐酸-硝酸-氢氟酸酸溶体系并采用微波消解法消解样品,并选择钇为内标元素,采用耐氢氟酸进样系统的电感耦合等离子体原子发射光谱法(ICP-AES)测定了菱镁矿中镁、钙、硅、铁、铝、钾、钠、锰、钛、磷等10种主量元素。各元素校准曲线线性相关系数均大于0.999;方法检出限为0.000 5%~0.028%。按照实验方法测定5种菱镁矿成分分析标准物质中镁、钙、硅、铁、铝、钾、钠、锰、钛、磷,结果的相对标准偏差(RSD,n=6)为0.35%~4.9%,且与认定值相一致。按照实验方法测定菱镁矿实际样品中10种元素,与重量法测定硅、滴定法测定镁及敞口酸溶-ICP-AES测定其他8种元素进行方法比对,结果无显著性差异。微波消解方式用酸量小,不引入杂质、同时保留了硅在溶液中,解决了菱镁矿中硅与其他主量元素不能同时测定的问题,内标法的使用提高了高含量镁测定的精密度,为菱镁矿的快速准确测定提供了新的途径。  相似文献   

12.
冯晓军  姜威  薛菁  史鑫 《冶金分析》2017,37(5):53-58
样品采用偏硼酸锂熔剂,加入溴化锂脱模剂、硝酸锂氧化剂在1 050℃高频熔样机上熔融4min,硝酸酸化提取定容后,采用基体匹配法配制校准曲线消除基体效应的影响,选取高盐雾化器进样直接用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷矿中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫。试验进行了熔剂与样品的稀释比、脱模剂选择、氧化剂选择、熔样温度、熔样时间、溶液酸度和溶液稳定性等条件试验,确定了最佳试验条件。方法检出限为0.000 2~0.025 8μg/g。按照实验方法测定磷矿样品中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫,结果的相对标准偏差(RSD,n=11)为0.48%~1.3%。按照实验方法测定GBW 07210、GBW 07211、GBW 07212共3个磷矿石标准样品中五氧化二磷、氧化镁、氧化铁、氧化铝、二氧化硅、氧化钙、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶、总硫,测定值与认定值(或者国家标准方法 GB/T 1880—1995的测定值)基本一致。  相似文献   

13.
薛宁 《冶金分析》2021,41(3):62-67
萤石的主要成分为氟化钙,其中不同元素的存在对其产品质量有不同的影响.传统对萤石成分的测定多采用分光光度法、滴定法和原子吸收光谱法,存在分析流程长,不能多元素同时测定等问题.实验采用高氯酸-硝酸溶解样品,待高氯酸冒烟完毕,用盐酸50%(V/V)溶解盐类,通过选择合适的分析谱线,避免了待测元素间的光谱干扰.研究了溶样方法、...  相似文献   

14.
卞大勇 《冶金分析》2018,38(5):72-77
碳化硅是应用最广泛、最经济的一种耐火原料,由于碳化硅贸易活跃,需要对表面杂质成分进行快速、准确的测定。样品采用氢氟酸、硝酸溶解,高氯酸冒烟至近干,再使用盐酸溶解可溶性盐类,通过过滤使得被测成分与碳化硅分离,选择Fe 259.939nm、Al 394.401nm、Ca 317.933nm、Mg 285.213nm、K 766.490nm、Na 589.592nm为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铁、铝、钙、镁、氧化钾、氧化钠,从而建立了使用ICP-AES测定高含量碳化硅表面铁、铝、钙、镁、氧化钾、氧化钠等杂质成分的方法。铁在0.020%~0.50%,铝、钙在0.020%~0.20%,镁、氧化钾、氧化钠在0.0020%~0.020%范围内校准曲线呈线性,线性相关系数均不小于0.9998。方法检出限为0.000042%~0.00064%(质量分数)。实验方法用于测定碳化硅样品表面铁、铝、钙、镁、氧化钾、氧化钠,结果的相对标准偏差(RSD,n=10)为1.9%~9.5%。按照实验方法测定碳化硅样品表面铁、铝、钙、镁、氧化钾、氧化钠,测定值与国家标准方法的测定结果相吻合。  相似文献   

15.
渣铁成分复杂,含铁量较高,其中的铁、钙、镁具有回收价值,但硅、铝、磷对渣铁回收有一定的影响,这些元素含量是渣铁回收利用的重要参数。实验利用熔融制样-X射线荧光光谱法(XRF)测定渣铁中全铁、氧化硅、氧化钙、氧化镁、氧化铝和磷含量,解决了传统方法检测渣铁中这些组分耗时长、步骤多、污染环境等问题,提高了检测效率。渣铁样品预先经过1000℃高温灼烧1h,除去其中水分、碳及易挥发成分,氧化其中还原性物质;然后以四硼酸锂作为熔剂,按稀释比1∶10与灼烧后被测样品混合,先800℃预熔融2min,然后于1150℃熔融12min,将样品制成均匀的玻璃融片。选用13种不同质量分数与渣铁成分类似的标准物质绘制校准曲线,仪器参数经过优化后,建立了X射线荧光光谱法快速检测渣铁中全铁、氧化硅、氧化钙、氧化镁、氧化铝、磷的方法。方法对平炉渣YSBC13838-96、转炉渣QD12-183、钒渣YSBC19809-2000标准样品的准确度试验结果表明:全铁、氧化硅、氧化钙、氧化镁、氧化铝、磷测定结果的相对标准偏差(RSD,n=7)为0.22%~4.2%;测定值与认定值一致。渣铁实际样品的测定值与国家标准方法检测值吻合,满足实验室日常质量监控要求。  相似文献   

16.
黑色页岩中硅和有机质含量较高,实验采用在750℃马弗炉中灼烧除碳后,经盐酸-氢氟酸-硝酸在200℃消解处理样品,使四氟化硅逸出。选择P 213.618nm、Mg 285.213nm、Fe 259.940nm、Al 396.152nm、Ca 317.933nm、Mn 257.610nm、Ti 334.941nm为分析谱线,选取耐氢氟酸进样系统,直接用电感耦合等离子体原子发射光谱法(ICP-AES)测定五氧化二磷、氧化镁、氧化铁、氧化铝、氧化钙、氧化锰、二氧化钛,从而建立了云南昆阳磷矿黑色页岩中五氧化二磷、氧化镁、氧化铁、氧化铝、氧化钙、氧化锰、二氧化钛的分析方法。在仪器最佳工作条件下,各组分校准曲线的线性相关系数均不小于0.9996;方法检出限为0.0012~0.028μg/g。方法应用于云南昆阳磷矿黑色页岩样品中五氧化二磷、氧化镁、氧化铁、氧化铝、氧化钙、氧化锰、二氧化钛的测定,结果的相对标准偏差(RSD,n=11)为0.29%~1.5%;加标回收率为97%~105%。按照实验方法测定西藏地区沉积物国家标准物质(GBW 07320、GBW 07328、GBW 07331)中五氧化二磷、氧化镁、氧化铁、氧化铝、氧化钙、氧化锰、二氧化钛,测定值与认定值基本一致。  相似文献   

17.
采用化学湿法分析时,钛精矿中钛极易水解并形成难溶的偏钛酸析出,给分析带来极大的阻碍,同时分析周期长,方法繁杂。实验采用粉末压片法制样,能量色散X射线荧光光谱法(EDXRF)同时测定钛精矿中硫、磷、氧化锰、五氧化二钒、氧化钙、氧化镁。选取钛精矿粒度为40μm,以硼酸为粘连剂,压片压力为25MPa,保压时间为60s压制光滑、无裂痕的样片。选用4~5个钛精矿标准样品制作校准曲线,同时采用基本参数法进行基体效应的校正,各待测组分校准曲线的线性相关系数均不小于0.997,各组分检出限为0.00049%~0.076%。按照实验方法测定钛精矿样品中硫、磷、氧化锰、五氧化二钒、氧化钙、氧化镁,测定结果的相对标准偏差(RSD,n=8)为0.71%~7.9%;方法用于测定两个钛精矿标准样品中硫、磷、氧化锰、五氧化二钒、氧化钙、氧化镁,测定值与认定值结果一致。  相似文献   

18.
霍红英 《冶金分析》2018,38(2):65-70
利用X射线衍射法对钒铁酸溶前后的物相进行对比分析,发现酸溶残渣的主要成分为硅铝氧化物,因此可以使用混酸、在高压下提高反应温度的微波消解技术处理样品。采用硝酸、盐酸、氢氟酸混合酸并使用微波消解两步升温法处理样品,选择Si 251.611nm、Al 394.401nm、Mn 257.610nm、P 178.284nm、As 189.042nm、Cu 324.754nm、Ni 231.604nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定硅、铝、锰、磷、砷、铜、镍,从而建立了钒铁中硅、铝、锰、磷、砷、铜、镍等杂质元素的分析方法。各待测元素校准曲线的线性相关系数r均大于0.9995;方法中各元素检出限为0.0001%~0.0013%(质量分数)。方法应用于两个钒铁标准样品中硅、铝、锰、磷、砷、铜、镍测定,结果的相对标准偏差(RSD,n=8)不大于4%,测定值与认定值相符合。  相似文献   

19.
使用盐酸并采用微波消解处理样品,选择Fe 238.204nm、Ca 317.933nm、Mg 285.213nm、Al 396.152 nm、Cd 214.438nm、Cr 267.716nm、Cu 324.754nm、Ni 221.647nm、Pb 220.353nm、Si 251.611nm、Tl 190.856nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊,从而建立了氧化铟锡靶材中铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊等痕量杂质元素的分析方法。各元素校准曲线线性相关系数均大于0.9995;方法中各元素的测定下限为0.30~1.78μg/g。按照实验方法测定2个氧化铟锡靶材样品中铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊,结果的相对标准偏差(RSD,n=11)为1.1%~8.2%,加标回收率为92%~108%。  相似文献   

20.
采用7mL王水-2mL氢氟酸-2mL高氯酸-5mL硝酸体系对样品进行处理,选用45Sc为内标校正27Al、47Ti、24Mg、39K和43Ca,选用72Ge为内标校正57Fe、53Cr、55Mn和63Cu,选用103Rh校正208Pb和111Cd,建立了电感耦合等离子体质谱法(ICP-MS)测定水泥中氧化铝、二氧化钛、氧化铁、氧化镁、氧化钾、氧化钙、铅、镉、铬、锰、铜等11种组分的方法。实验表明,在样品中加入7mL王水和2mL氢氟酸,置于80℃电加热装置上预处理20min,放入微波消解仪中进行消解,消解后样液中加入2mL高氯酸于160℃进一步消解样品并驱除多余的氢氟酸,再加入5mL硝酸驱除多余的高氯酸,可将样品溶解完全。在选定的实验条件下,各组分相应校准曲线的相关系数均不小于0.9996。按照实验方法对两种水泥标准物质GBW 03204b和GBW 03203b中的11种组分分别进行了8次平行测定,并分别加入铅、镉、铬、锰、铜的单元素标准溶液进行加标回收试验,所有组分测得结果的相对标准偏差(RSD,n=8)在3.7%~6.2%之间,氧化铝、二氧化钛、氧化铁、氧化镁、氧化钾、氧化钙的测定值与认定值基本一致,铅、镉、铬、锰、铜的加标回收率在87%~109%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号