首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 157 毫秒
1.
LPG进气道液态喷射的实验研究   总被引:7,自引:3,他引:4  
设计了LPG低压液态喷射的燃料供应系统和控制系统,对LPG进气道液态喷射进行了实验研究,将液态喷射与气态喷射及燃用汽油时的动力性,排放作了对比,研究了空燃比对LPG液态喷射发动机性能的影响。结果表明:采用液态喷射方式具有良好的动力性,与燃用汽油相比污染物排放得到很大改善,与气态喷射相比HC排放量略有上升,NOx下降,空燃比对发动机性能的影响与燃用汽油时基本一致。  相似文献   

2.
为控制汽油机稀燃NOx排放,对Ir-ZSM5分子筛催化剂在实际稀燃排气条件下进行了试验研究.试验结果表明,应用Ir-ZSM5催化剂,可以实现CO对稀燃NOx的选择催化还原反应.在空燃比为15~20时,空速为30000/h时,NOx最高转化效率可达50%~80%,并且具有较宽的高活性温度窗口.随着空燃比的增加,NOx转化效率减小.Ir-ZSM5催化剂对HC、CO也可以实现较高的转化率,有望应用于当量空燃比条件,从而降低空燃比控制精度.该催化剂尤其适合稀燃汽油机的需要.  相似文献   

3.
应用GT-POWER软件和化学动力学软件CHEMKIN建立了汽油发动机工作过程计算模型,并用试验结果进行了验证。在此基础上对汽油发动机燃烧LPG时的动力性能及经济性能进行了变参数研究。模拟结果表明,在相同工况条件下,随着压缩比的增大,燃用LPG发动机的经济性和动力性能都有所提高,但同时爆震指数也相应增加。随着空燃比的增加,发动机的经济性能和动力性能均先提高后降低,空燃比对缸内层流燃烧速度和绝热火焰温度影响较大。  相似文献   

4.
空燃比的计算及测量误差分析   总被引:1,自引:0,他引:1  
推导了由测量得到的燃烧产物中CO2、CO、O2、NO,和HC的体积分数计算燃料空气混合气空燃比的计算公式.推导的公式考虑了燃料中碳、氢、氧3种组成成分,可用于常见的各种燃料的混合比计算.推导的公式还考虑了空气中氩和水蒸气的含量,因而更适合精确计算混合比的场合.推导的公式还被用于分析空燃比精度的影响参数和点燃式发动机空燃比的计算,结果表明,公式的计算值与其它公式的计算值及仪器指示值的变化趋势是一致的,燃料组成的H/C比、O/C比及空气中水蒸气含量对空燃比的测量结果有较大影响.  相似文献   

5.
在1台1.5 L排量的四缸汽油机上,进行了发动机世界轻型汽车测试循环(WLTC)工况取消加浓,即空燃比为理论空燃比的试验研究,试验包括全负荷特性试验和万有特性试验,试验结果表明,发动机全负荷由于受取消动力加浓和爆震的影响,动力性相对原机降低,万有特性中理论空燃比边界可以覆盖全部WLTC循环工况点。  相似文献   

6.
热EGR对氢内燃机性能及排放影响的试验研究   总被引:1,自引:0,他引:1  
氢内燃机燃烧产物与传统内燃机不同,因此其EGR的作用机制与传统内燃机有很大差别.为了研究EGR对氢内燃机的动力性和排放特性的影响规律,以一台4缸2.0 L的氢内燃机为研究对象进行了试验研究,并探讨了缸内燃烧的发展过程和特点.试验表明:在循环喷氢量不变时,可以通过调节EGR率改变混合气的当量燃空比.在当量燃空比小于1时,EGR率的变化对输出转矩影响不大,在当量燃空比超过1后,输出转矩随EGR率的增加线性下降;在小负荷时使用热EGR将导致缸内温度的升高、增大NO相似文献   

7.
在石英玻璃微圆管内,进行甲烷/氢气/氧气预混合火焰传播的实验研究,分析了管径、掺氢比、当量比及入口流速对火焰传播状态和稳定火焰位置的影响规律.结果表明:实验观测到的微火焰主要有管外射流火焰、脉动火焰、稳定火焰与反复熄燃火焰;随着管径增加,稳定火焰出现在更高当量比情况下,火焰位置更靠近燃烧室入口;掺氢比越高,形成稳定火焰对应的当量比越高,火焰位置更接近出口;高当量比时,稳定火焰仅在低入口流速下能够获得,随着当量比降低,火焰能在较高入口流速下稳定;低流速下,稳定火焰在当量比为1.85~1.925时更接近燃烧室入口,随着流速增加,火焰位置更接近出口;反复熄燃火焰在管径增加时对应的当量比维持在1.79~1.93,在掺氢比增加时对应的当量比为1.79~2.12.  相似文献   

8.
天然气直喷发动机当量比与稀薄燃烧对比研究   总被引:1,自引:0,他引:1  
针对一台自然吸气四缸天然气缸内直喷发动机,建立了发动机仿真模型,通过台架试验数据对模型进行了验证。开展了均质当量比燃烧和稀薄燃烧两种方案的整机动力性、热负荷和经济性对比研究。结果表明:稀薄燃烧时动力性下降明显,当量比燃烧时热负荷较高,空燃比稍大于当量比时经济性最好。  相似文献   

9.
汽油缸内直喷(GDI)已成为新一代汽油机提高经济性、降低排放的重要手段。作者以一台家用轿车三缸发动机为对象,对缸内直喷的空气流动、混合过程和燃烧情况进行三维模拟计算分析。结果表明,采用该燃烧室设计方案并与适当的喷雾、气流运动相配合,在当量空比时,使用汽油缸内直喷能获得与均质预混燃烧相近的效果。同时,调整喷油定时,能够在缸内形成工质的非均匀分布,在总空燃比为30时仍能实现衡薄燃烧。  相似文献   

10.
缸内直喷式汽油机燃用当量空燃比混合气的试验研究   总被引:3,自引:0,他引:3  
缸内直接喷射式汽油机,要求部分负荷时在压缩过程后期喷入燃油,实现混合气分层燃烧,以获得好的经济性;在全负荷时,燃油在进气过程中喷入,采用化学计量比混合气,实现均质预混合燃烧,以保持汽油机升功率高和排放低的优点。本文将一台柴油机改装为缸内直接喷射汽油机,在试验台架上进行了高负荷时燃用当量空燃比混合气的试验研究,结果表明,与化油器式汽油机相比,高负荷时油耗降低了6%,未燃碳氢降低了31%,NOx排放降低了10%,取得了较为满意的结果。  相似文献   

11.
以发动机4000r/min、节气门开度35%为试验工况,对纯汽油及不同掺混体积分数丙酮-丁醇-乙醇(acetone-butanol-ethanol,ABE)与汽油混合物开展了不同点火提前角和喷油量的试验研究。分析了不同ABE混合比、点火提前角和过量空气系数对发动机性能的影响,并对每种燃料发动机最大功率工况的性能参数进行了比较。结果表明:点火提前角和过量空气系数相同时,混合燃料中ABE含量越高,燃油流量越大,发动机功率越大,有效热效率越高;燃油流量的总热量增大和热-功转换效率提高是促使发动机功率增大的主要原因;随ABE掺混比增加,NO比排放明显降低,CO比排放略有增加,碳氢化合物比排放先增后减。浓混合气工况增加ABE含量比在当量空燃比状态下增加ABE含量,发动机的有效热效率增大更明显,发动机的NO比排放降低更加明显。研究表明高速汽油机掺混ABE燃料具有较好的应用前景。  相似文献   

12.
推导了低热值燃气-柴油双燃料发动机动力性能计算公式,并对由单缸、四冲程、水冷、直喷式柴油机改装的生物制气-柴油双燃料发动机的动力性能进行了计算分析。结果表明:双燃料发动机能够达到原柴油机的动力水平;其动力性能随引燃油量的减小而降低;在新鲜空气充足的前提下,供给更多的燃气,双燃料发动机的动力性能增强;燃气替代率有一最大值,超过该值后,随替代率增大,动力性能急剧下降;燃气低热值越高,替代率便可越大。计算得出的生物制气-柴油双燃料发动机在标定点和最大转矩点的最大生物制气替代率和对应的燃气进气比,与试验结果相吻合。  相似文献   

13.
提出了采用排气再循环同时提高压缩比的方法改善化计量比汽油机的经济性、降低排放的新方法,并在单缸汽油机上进行了试验研究。试验中保持空燃比为化学计量空燃比,通过优化压缩比、涡流比及EGR率,发动机压缩比可以提高到11.8而不发生爆燃,燃油经济性提高5.3%,NOx排放下降50%-60%,HC排放有所上升,但(NOx+HC)排放下降20%-30%。试验结构表明,采用该方法来改善化学计量比汽油机的性能是行之有效的。  相似文献   

14.
研究了混合动力车用汽油机起动暖机过程的标定策略,在台架上对一台混合动力车用汽油机拖动和暖机工况的喷油及点火控制参数进行了重新标定,通过适当加大起动和暖机空燃比、加快暖机期间空燃比向化学计量空燃比的过渡以及适当推迟点火时刻等措施,显著加快了催化转化器起燃速度,改善了排放性能。  相似文献   

15.
The in-cylinder hydrogen fuel injection method (diesel engine) induces air during the intake stroke and injects hydrogen gas directly into the cylinder during the compression stroke. Fundamentally, because hydrogen gas does not exist in the intake pipe, backfire, which is the most significant challenge to increasing the torque of the hydrogen port fuel injection engine, does not occur. In this study, using the gasoline fuel injector of a gasoline direct-injection engine for passenger vehicles, hydrogen fuel was injected at high pressures of 5 MPa and 7 MPa into the cylinder, and the effects of the fuel injection timing, including the injection pressure on the output performance and efficiency of the engine, were investigated. Strategies for maximizing engine output performance were analyzed.The fuel injection timing was retarded from before top dead center (BTDC) 350 crank angle degrees (CAD) toward top dead center (TDC). The minimum increase in the best torque ignition timing improved, and the efficiency and excess air ratio increased, resulting in an increase in torque and decrease in NOx emissions. However, the retardation of the fuel injection timing is limited by an increase in the in-cylinder pressure. By increasing the fuel injection pressure, the torque performance can be improved by further retarding the fuel injection timing or increasing the fuel injection period. The maximum torque of 142.7 Nm is achieved when burning under rich conditions at the stoichiometric air-fuel ratio.  相似文献   

16.
The performance and pollutant emission of a four-stroke spark ignition engine using hydrogen–ethanol blends as fuel have been studied. The tests were performed using 2, 4, 6, 8, 10 and 12 mass% hydrogen–ethanol blends. Gasoline fuel was used as a basis for comparison. The effect of using different blends of hydrogen–ethanol on engine power, specific fuel consumption, CO and NOx emission was studied. Operating test results for a range of compression ratio (CR) and equivalent ratio are presented. The results show that the supplemental hydrogen in the ethanol–air mixture improves the combustion process and hence improves the combustion efficiency, expands the range of combustibility of the ethanol fuel, increases the power, reduces the s.f.c., and reduces toxic emissions. The important improvement of hydrogen addition is to reduce the s.f.c. of ethanol engines. Results were compared to those with gasoline fuel at 7 CR and stoichiometric equivalence ratio.  相似文献   

17.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

18.
Renewable energy sources for the gasoline engines alcohols gain importance recently. These renewable energy sources have attracted the attention of researchers as alternative fuel due to their high octane number. In addition, these are also clean energy sources and can be obtained from the biomass alcohols with low carbon like ethanol. In this study, the effect of compression ratio on engine performance and exhaust emissions was examined at stoichiometric air/fuel ratio, full load and minimum advanced timing for the best torque MBT in a single cylinder, four stroke, with variable compression ratio and spark ignition engine.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号