共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
以尿素和氧化石墨烯(GO)为原料,通过直接研磨负载和在氮气保护气氛下煅烧的方法制备出氮掺杂石墨烯[石墨相氮化碳(g-C_3N_4)/还原GO(rGO)],通过机械共混制备g-C_3N_4/rGO/白炭黑/溶聚丁苯橡胶(SSBR)复合材料,并对其性能进行研究。结果表明:g-C_3N_4/rGO与白炭黑两种填料在橡胶基体中能够实现相互分散;g-C_3N_4/rGO等量部分替代白炭黑可以改善复合材料的物理性能和动态力学性能,在g-C_3N_4/rGO用量为5份时,复合材料的综合物理性能最佳,压缩生热和滚动阻力最低。 相似文献
4.
5.
6.
7.
制备碳纳米管(CNTs,牌号为GT-300,Flotube 9000和Whisker CNTs-34~#)/溶聚丁苯橡胶(SSBR)复合材料,并对其性能进行研究。结果表明:与GT-300/SSBR和Flotube9000/SSBR混炼胶相比,Whisker CNTs-34~#/SSBR混炼胶的焦烧时间延长,正硫化时间缩短,且最大转矩、最小转矩及两者之差随着CNTs用量的增大变化不大;与SSBR硫化胶相比,CNTs/SSBR复合材料的拉伸强度和撕裂强度均有所提高,且随着CNTs用量的增大,CNTs/SSBR复合材料的密度、邵尔A型硬度和阿克隆磨耗量均呈增大趋势,Whisker CNTs-34~#用量为7份时复合材料的综合物理性能较佳;Whisker CNTs-34~#/SSBR复合材料的热导率增幅、导电性能增幅均最小;Whisker CNTs-34~#在SSBR基体中分散更均匀、分散性更好。 相似文献
8.
9.
采用一段密炼和二段开炼的两段混炼工艺制备氧化石墨烯(GO)/天然橡胶(NR)/溶聚丁苯橡胶(SSBR)和还原氧化石墨烯(rGO)/NR/SBR复合材料,研究一段混炼时间对GO/NR/SSBR和rGO/NR/SSBR复合材料性能的影响。结果表明:随着一段混炼时间的延长,GO/NR/SSBR和rGO/NR/SSBR复合材料的Fmax和FL增大,t90缩短;邵尔A型硬度、300%定伸应力、拉伸强度和撕裂强度呈先增大后减小的趋势,导电性能和导热性能呈先提高后降低的趋势,气密性能呈先提高后平稳再降低的趋势。 相似文献
10.
11.
采用聚醚胺D400(简称D400)改性氧化石墨烯(GO),制备D400-GO/环氧化溶聚丁苯橡胶(ESSBR)复合材料,并对其结构和性能进行研究。结果表明:通过傅里叶红外变换光谱和X射线光电子能谱分析确定D400成功地接枝到GO表面;接枝D400可以改善GO在ESSBR基体中的分散性,增强GO与ESSBR基体的结合能力;与GO/ESSBR复合材料相比,D400-GO/ESSBR复合材料的拉伸性能、抗湿滑性能、气密性和耐磨性能提高。 相似文献
12.
研究白炭黑/炭黑填充星形溶聚丁苯橡胶(SSBR)和分子链自由末端用硅氧烷基团封端改性星形SSBR(S-SSBR)的物理性能、动态力学性能和微观结构。结果表明:随着偶联剂用量(硅氧烷基团物质的量)的增大,星形SSBR复合材料的拉伸强度先增大后减小,S-SSBR复合材料的拉伸强度先减小后增大;星形SSBR和S-SSBR复合材料的300%定伸应力呈增大趋势,压缩疲劳温升降低,0℃下损耗因子(tanδ)增大,60℃下tanδ值减小。当复合材料中硅氧烷基团的物质的量相同时,与星形SSBR复合材料相比,S-SSBR复合材料定伸应力和0℃下tanδ值的增幅、压缩疲劳温升和60℃下tanδ值的降幅较大,填料的分散性较好。 相似文献
13.
研究短纤维/白炭黑补强溶聚丁苯橡胶(SSBR)复合材料的结构与性能。结果表明:与无短纤维胶料相比,短纤维胶料的t10均延长,t_(90)无明显变化,F_L和F_(max)均降低,在短纤维胶料中非极性的聚酯短纤维和芳纶短纤维胶料的F_L和F_(max)较高;芳纶短纤维胶料的门尼粘度较高,聚酯短纤维和芳纶短纤维胶料硬度较大;聚酯短纤维胶料的拉伸强度较大,取向程度较高,芳纶短纤维胶料的撕裂强度较大;芳纶短纤维补强SSBR胶料在拉伸速率达到400 mm·min^(-1)后发生屈服,屈服软化后发产生塑性形变;短纤维/白炭黑补强SSBR胶料断裂破坏的主要机理是短纤维-短纤维、橡胶-白炭黑之间相互作用力的破坏,破坏形态以短纤维的抽出为主。 相似文献
14.
15.
氧化石墨烯(GO)具有较高的比表面积,层间距大,表面拥有丰富的官能团,可以很好地分散到聚合物中,但GO导电性差。研究对GO进行还原和表面修饰,以改善石墨烯和HDPE的相容性。采用熔融混炼法制备了HDPE/石墨烯复合材料,结合力学性能、导电性能、微观结构测试,考察不同HDPE/石墨烯复合材料的导电阈值,分析影响复合材料导电性的因素,进而得出较优化的制备工艺。研究发现石墨烯添加量为7.5%时,导电通路开始形成,当石墨烯含量达到7.5%时,拉伸强度提升22.14%,拉伸模量提升21.19%。 相似文献
16.
17.
采用短纤维(棉、尼龙66、聚酯及芳纶1414)与白炭黑制备短纤维增强溶聚丁苯橡胶复合材料(SFRC),研究其硫化特性、物理机械性能、纤维取向特性及破坏机理,实验结果表明:(1)短纤维使焦烧时间t10延长,加工扭矩ML、MH降低,加工流动性提高,硬度和撕裂强度提高,但拉伸强度降低;(2)聚酯纤维制备SFRC的拉升强度最大,各项异性最大,取向度最高,芳纶1414纤维制备SFRC的撕裂强度最大;(3)芳纶1414纤维制备的SFRC在拉伸速率>400mm/min时,发生屈服,出现屈服软化,并产生塑性形变,其屈服破坏机理是由于纤维界面分子间作用力弱而发生的大尺度滑移;(4)SFRC断裂破坏的主要机理是纤维与其它组分之间相互作用力的破坏,破坏形态以纤维的抽出破坏为主。 相似文献
18.
从力学性能、动态压缩疲劳生热、动态力学性能等方面对比了分别由SnCl_4和SiCl_4偶联的溶聚丁苯橡胶(SSBR)与白炭黑所制备复合材料的性能,并利用测定结合橡胶含量、橡胶加工分析仪及Kraus模型等手段探讨了两种SSBR与白炭黑的相互作用。结果表明,与用SnCl_4偶联所制备的SSBR相比,经SiCl_4偶联制得的SSBR与白炭黑的相互作用力更强,白炭黑的分散性更好。所制备SSBR/白炭黑复合材料的力学性能更好,压缩温升更低,滚动阻力更小,抗湿滑性能更好。 相似文献
19.
以十八胺(ODA)对氧化石墨烯(GO)进行改性,采用乳液复合法制备ODA功能化GO(ODA-GO)/乳聚丁苯橡胶(ESBR)复合材料,并对其结构和性能进行研究。结果表明:ODA-GO在ESBR中的分散性良好,少量ODA-GO在ESBR中能够形成较强的填料网络;与ESBR胶料相比,ODA-GO/ESBR复合材料在0℃时的损耗因子(tanδ)增大,60℃时的tanδ减小;随着ODA-GO用量的增大,复合材料的物理性能和气密性能提高。 相似文献
20.
研究碳纳米管(CNTs)/白炭黑/炭黑补强溶聚丁苯橡胶(SSBR)纳米复合材料的导电性能。结果表明,当白炭黑用量小于50份时,白炭黑的阻隔效应占主导,CNTs/白炭黑补强SSBR纳米复合材料的导电性能较差;当白炭黑用量达到70份时,白炭黑的体积排除效应占主导,复合材料的导电性能较好。炭黑和CNTs的协同作用可提高CNTs/白炭黑/炭黑补强SSBR纳米复合材料的导电性能。偶联剂Si747改性复合材料的导电性能优于未添加偶联剂Si747的复合材料。 相似文献