首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蒸汽辅助重力泄油技术在超稠油开发中的应用   总被引:11,自引:0,他引:11  
对国外超稠油开发方式进行调研,利用数值模拟技术对辽河油区超稠油油藏进行了蒸汽辅助重力泄油(SAGD)开发可行性及油藏工程研究,确定了在杜84块馆陶组开展4个井组的直井与水平井组合SAGD试验。通过2a的现场应用,馆陶油层SAGD试验获得成功,目前处在蒸汽腔扩展阶段,井组日产油较蒸汽吞吐阶段上升了72t,预测SAGD开发可提高采收率27%。SAGD技术已成为超稠油油藏蒸汽吞吐后期的重要开发方式,可为类似油藏的开发提供依据。  相似文献   

2.
杜84断块SAGD监测技术研究   总被引:2,自引:1,他引:1  
杜84断块超稠油直井随着吞吐周期的不断增加,周期吞吐效果变差.为提高采收率,在直井井间加密实施水平井,挖掘井间剩余油,采用周围直井注汽水平井采油的蒸汽辅助重力泄油(sAGD)技术进行开采.在SAGD生产阶段,利用水平井井内下入毛细管与热电偶束的方法进行多点压力温度监测,同时监测水平段蒸汽腔内压力温度及蒸汽腔扩展范围,为周围直井注汽井选择及水平井生产动态参数调整,确保水平段蒸汽腔横向及纵向均匀扩展,最终实现重力泄油提供了重要的依据.  相似文献   

3.
超稠油油藏直井与水平井组合SAGD技术研究   总被引:19,自引:5,他引:14  
辽河油田曙一区杜84块兴隆台油层兴Ⅵ组为厚层块状超稠油油藏,50℃下脱气原油黏度大于100Pa·s。针对该油藏的地质特征、原油性质与开发现状,分析了直井与水平井组合蒸汽辅助重力泄油(SAGD)技术的适应性,在现有直井已吞吐多个周期、地层压力已大幅下降的情况下,应用数值模拟技术研究了直井与水平井组合SAGD技术的水平井部署方式并对SAGD注采参数进行了优化。研究结果表明,直井与水平井组合SAGD技术是杜84块兴Ⅵ油层组超稠油油藏蒸汽吞吐后的有效接替技术,可提高原油采收率30%,累计油汽比可达到0.296。最佳的布井方式为水平生产井在两排垂直井中间,且位于侧下方,垂向距离为20m,水平井段长度为280m;井底注汽干度必须大于70%,且生产井排液速度必须与注汽井注汽速度相匹配。图6表4参11  相似文献   

4.
正蒸汽驱辅助重力泄油(SAGD)技术是超稠油油藏吞吐后大幅度提高采收率核心技术。创新建立蒸汽吞吐、蒸汽驱、SAGD联动相似准则,深化驱泄复合作用机理,创新多种驱泄复合井网开发模式,发展多介质组合SAGD技术,实施厚度界限由15m降至12m,预计最终采收率可达70%以上,较蒸汽吞吐提高30%~45%,建成国内最大超稠油SAGD生产基地。  相似文献   

5.
我国陆上超稠油油藏储量丰富,但因在油层条件下原油呈“固态”,油藏非均质性强,常规热采技术难以有效开发。中国石油集团经过近15年持续攻关,创新强非均质超稠油油藏泄油理论方法,创建强非均质超稠油蒸汽辅助重力立体泄油系统,研发高温高压钻采工艺体系,配套高温复杂采出液水/热循环利用等系列技术,形成了适合于我国陆相强非均质超稠油油藏高效开发的蒸汽辅助重力泄油技术(SAGD/VHSD)。新一代超稠油油藏高效开发和提高采收率的主体开发技术支持了新疆浅层超稠油油藏的高效开发和辽河油田中深层超稠油油藏提高采收率工程建设,支撑了稠油千万吨稳产。“双碳”背景下,超稠油开发技术将主要向原位改质,电加热辅助蒸汽,风、光、氢储联合产生蒸汽等绿色环保的技术体系发展。  相似文献   

6.
双水平井SAGD循环预热阶段调控及认识   总被引:1,自引:0,他引:1  
准噶尔盆地西北缘的风城油田蕴藏极其丰富的浅层超稠油资源,该油藏具有储量丰度高(519.6×104t/km2)、埋藏浅、地层温度低的特征,原油性质具有黏度高(50℃时13768mPa?s)、凝固点高的特点。该油藏采用常规蒸汽吞吐开采难度大,采收率相对较低。而蒸汽辅助重力泄油是开发超稠油的一项前沿技术,其启动技术主要有蒸汽吞吐预热启动和循环预热启动;相对于蒸汽吞吐,注蒸汽循环预热启动吸汽加热均匀,启动平稳,但循环预热机理仍需进一步研究。针对风城油田重32井区超稠油双水平井SAGD开发试验及生产现状,深入研究分析了该井区SAGD循环预热阶段所面临的一系列问题;并以理论结合实际,探讨了双水平井SAGD循环预热阶段现场操作中的一系列优化技术,对双水平井SAGD在循环预热阶段的现场优化操作形成了初步认识。  相似文献   

7.
蒸汽辅助重力泄油技术以较高的采收率成为开发超稠油的一项前沿技术.曙一区杜84块馆陶组油藏开展了SAGD生产试验.根据SAGD的生产特点,需要有大排量耐高温的举升系统来支持SAGD生产.应用现有技术对大排量高温举升系统进行优化设计,经现场应用后,能够满足SAGD生产的需要,为今后的推广应用奠定了基础.  相似文献   

8.
二氧化碳气体辅助SAGD物理模拟实验   总被引:5,自引:2,他引:3  
为进一步提高蒸汽辅助重力泄油(SAGD)的开发效果,针对辽河油田杜84块馆陶组超稠油油藏SAGD开采的现状,采用二维物理模拟技术,开展了通过添加CO2气体改善SAGD开发效果的机理及技术可行性实验。实验研究结果表明:CO2气体辅助SAGD开发杜84块馆陶组超稠油油藏在技术上是可行的,超稠油SAGD过程中添加的CO2气体具有非凝析气和溶剂的双重作用机理;从CO2气体辅助SAGD实验的温度场发育数据来看,CO2气体有利于SAGD蒸汽腔的侧向扩展,增加蒸汽的横向波及体积;添加的CO2气体使SAGD的采收率、油/汽比及采油速度都明显提高。同时,进一步研究了添加的CO2气体量对SAGD开发效果的影响程度,初步优化出CO2气体与蒸汽的最佳注入比例为20%。  相似文献   

9.
氮气辅助SAGD开采技术优化研究   总被引:14,自引:4,他引:10  
利用物理模拟及数值模拟方法,研究了在蒸汽辅助重力泄油(SAGD)过程中添加氮气提高顶水超稠油油藏开发效果的生产机理,主要包括:形成隔热层,降低热损失,提高热效率;维持系统压力,改善流度比;降低原油黏度,提高流动能力。优选出了氮气注入方式、氮气与蒸汽比和氮气总注入量。研究结果表明,氮气辅助SAGD开采技术在杜84块馆陶油层开采中是可行的,有利于蒸汽腔的侧向扩展,增加蒸汽的横向波及体积;在SAGD过程中添加氮气能够有效控制顶水下泄,延长SAGD生产时间3~4年,提高了油藏采收率和油汽比。  相似文献   

10.
超稠油Ⅲ类油藏原油黏度高、渗透率低、夹层发育,在蒸汽辅助重力泄油(SAGD)生产中存在蒸汽腔扩展慢、泄油阻力大、产量与油汽比“双低”等现象,针对该问题,提出了碳酰胺辅助SAGD技术,采用室内实验与数值模拟结合的方法,揭示其机理并进行关键参数优化。研究表明,碳酰胺注入蒸汽腔后具有乳化降黏、提高驱油效率和改善水敏等作用。以地质条件和采出程度为依据,制订油藏筛选标准,优选出风城油田Z井区试验井组,并开展优化设计,设计碳酰胺注入质量分数为60%,注入温度为60~100℃,注入量为42 t,注入井焖井时间为60 min,后续蒸汽顶替段塞为10 t,生产井焖井时间90 min后转正常SAGD操作。与纯蒸汽SAGD相比,1 a期内平均日产油提高3.8 t/d,油汽比提高0.04,按照油价1 988元/t测算阶段投入产出比为1∶5,预测最终采收率提高9.4个百分点,最终达到55.7%。研究成果对提高超稠油Ⅲ类油藏SAGD开发效果具有重要意义。  相似文献   

11.
根据吉木萨尔地区稠油油藏特点,通过三维地质建模对三种开发方式即全直井井网蒸汽吞吐转汽驱、直井+水平井井网吞吐转蒸汽辅助重力泄油技术、全水平井井网蒸汽吞吐转汽驱的开发方式进行了开发效果数值模拟研究,结果表明,直井+水平井蒸汽吞吐转SAGD的开发方案最适合本区块的开发。  相似文献   

12.
SAGD技术是蒸汽辅助重力泄油技术。根据辽河油区地质特点及开发方式,在复合油藏模型和各向异性水平井试井模型的研究成果基础上,采用叠加原理,建立了直井与水平井组合方式下试井解释模型,研究了典型曲线拟合方法。将研究成果应用于辽河油区的试井资料解释之中,得到的分析结果符合油田实际,对指导水平井与直井组合方式下的稠油合理高效开发及制定油田开发技术政策具有一定的理论和现实意义。  相似文献   

13.
超稠油油藏的储层非均质性对SAGD(蒸汽辅助重力泄油)开发效果影响较大,尤其当储层内发育形态各异的夹层时,将对蒸汽腔的发育起到不同程度的阻挡作用,造成蒸汽腔发育迟缓。以国内某油田Z1区块储层特征为基础,通过数值模拟研究了非均质油藏不发育夹层、夹层位于SAGD井对上方以及夹层位于SAGD井对之间这3种情况下的布井方式,详细论述了储层非均质性对SAGD布井的影响,确定了非均质油藏SAGD布井的渗透率下限、夹层闭合度上限,并通过SAGD开发现场跟踪实例对布井方式进行了验证。  相似文献   

14.
超稠油SAGD开发蒸汽腔形成及扩展规律研究   总被引:6,自引:2,他引:6  
SAGD蒸汽腔的形成及扩展与油藏压力、注入蒸汽干度密切相关,是超稠油油藏SAGD开发成功的关键。应用数值模拟技术及动态监测手段对直井与水平井组合SAGD蒸汽腔的形成及扩展规律进行研究,确定了蒸汽腔形成及扩展规律:蒸汽腔形成于注汽井点,初期腔体较小,横向扩展较快;连续注汽时,蒸汽腔纵向扩展速度逐渐加快并超过横向扩展速度,蒸汽腔下部横向扩展最慢。根据蒸汽腔的形成和扩展规律对蒸汽腔进行系统分析,确定了SAGD泄油通道的2种形式,为辽河油区SAGD试验过程中的动态调整提供了依据,同时也为辽河油区未来SAGD规模实施打下了坚实的理论基础。  相似文献   

15.
针对油藏内部夹层影响SAGD开发效果的问题,运用分类分析、正交实验设计、数值模拟等方法,确定了夹层影响SAGD开发效果的主控因素及其影响程度。研究表明:夹层影响热连通,阻碍蒸汽腔的发育,进而降低了SAGD前期到中期采油速度;夹层与注采井的相对位置关系对SAGD生产效果影响显著;无泄流通道情况下,夹层影响SAGD开发效果的主控因素是夹层沿水平井方向发育的长度或者夹层所处位置离注汽井的距离;井间夹层长度达到水平井长度40%或注汽井上方夹层在注汽井上方3m以内,采油速度降低40%以上。可利用直井辅助注汽的方式扩大蒸汽腔发育体积,提高SAGD采油速度。研究成果对夹层发育的超稠油油藏实施SAGD开发具有指导意义。  相似文献   

16.
辽河油田超稠油油藏开采方式研究   总被引:22,自引:6,他引:22  
辽河油田杜84 块兴隆台油层是一个超稠油油藏。由于地下原油粘度大,流动性差,因此常规直井蒸汽吞吐效果很差,平均周期油汽比只有0.35。为了提高蒸汽吞吐开采效果,在油田现场采取了一系列技术措施,包括采用高效真空隔热油管、加深注汽管柱、采用大泵抽油等,措施后,周期油汽比提高到了0.559。同时,根据该油藏地质特征及原油性质,研究并试验了水平井注蒸汽开采、成对水平井蒸汽辅助重力泄油、水平裂缝辅助蒸汽驱及垂向燃烧辅助水平井重力泄油等新技术及开采方式。结果表明,水平井技术与重力泄油相结合,将是提高厚层超稠油开采效果的一种主要方式。  相似文献   

17.
针对辽河油田直井与水平井组合SAGD井组在开发过程中存在泄油速率低、蒸汽腔扩展不均匀等问题,以R.M.Bulter建立的双水平井泄油模型为理论基础,将直井与水平井简化为双水平井,在考虑端点效应有限长度水平井日产量方程的基础上,建立了水平井的泄油速率模型,并得到直井与注汽水平井组合SAGD上产和稳产阶段的泄油速率方程。分析泄油速率方程发现,直井与水平井组合SAGD井组泄油速率的主控因素为泄油井点数和蒸汽腔纵向扩展高度,结合辽河油田稠油开发实践,给出了直井与水平井组合SAGD井组提高泄油速率的技术措施,即水平段跟部注汽井增加2口,并将注汽井注汽排量提高20%,同时将最佳射孔位置设在靠近低物性段处,补孔长度确定为8 m。该技术在辽河油田6井组进行了现场应用,日产油量均呈现不同程度的上升,取得阶段性成功,为进一步提高SAGD井组泄油速率奠定了良好的基础。   相似文献   

18.
风城超稠油蒸汽吞吐后期转蒸汽驱开发方式研究   总被引:1,自引:0,他引:1  
在新疆风城油田超稠油油藏注蒸汽吞吐开发后期,蒸汽驱开发方式是提高采收率的有效途径.研究表明,蒸汽驱过程体现了驱泄复合作用,即蒸汽超覆在油层上部形成蒸汽腔,加热原油在驱动力和重力双重作用下从生产井采出,由此可形成直井小井距蒸汽驱、直井与水平井组合蒸汽驱、水平井与水平井组合蒸汽驱3种吞吐后期接替方式,先导试验达到了预期效果,进一步拓展了蒸汽驱适用的地质条件和组合方式,对同类超稠油油藏的开发具有借鉴意义.  相似文献   

19.
强非均质储层条件下,超稠油双水平井SAGD开发中普遍存在注采井间窜扰、水平段动用不均匀、蒸汽腔规模小且扩展缓慢等问题,导致SAGD井组长期处于低产、低效状态。为了改善开发效果,提出双水平井SAGD间歇式吞吐强化扩腔技术策略。以新疆风城油田M区实际井组为例,采用数值模拟对吞吐操作方式、注采参数、转轮时机等关键参数开展了系统研究。研究结果表明,采用注汽井注汽(生产井关井),焖井后生产井采油(注汽井关井)的方式,在合理注采参数条件下,间歇式吞吐能有效改善开发效果,采收率达53.8%。SAGD间歇式吞吐强化扩腔技术主要作用机理为:(1)吞吐期间注汽井高速注入,蒸汽热损失减少;(2)注汽时消除了汽窜和压差影响,有助于扩大蒸汽波及和动用较差区域;(3)注汽期间重力泄油持续进行,建立的液面在开井生产时能有效防止汽窜,实现高效泄油。采用该技术在风城M区开展了2井组试验,措施后日产油水平提高了1.5 t/d,且生产稳定,研究成果为同类油藏改善开发效果提供技术参考。  相似文献   

20.
辽河油田曙一区杜84 块超稠油油藏原油黏度大,采用直井蒸汽吞吐开采,蒸汽波及半径小,周期 产油量低,日产油水平低,产量递减快,井间剩余油得不到有效动用。通过开展超稠油水平井热采技术研 究,对水平井部署方式、吞吐注采参数及提高采收率的SAGD 技术进行了分析论证,明确了水平井开采技 术能够缓解油田开发层间、层内和平面上的三大矛盾,是一项非常有潜力、有优势的新技术。水平井吞吐 及SAGD 技术的应用,使该区块成功地实现了二次开发,油藏开发效果较用直井开发有较大改善。水平井 技术已成为提高区块采收率的有效手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号