共查询到20条相似文献,搜索用时 15 毫秒
1.
Wen-Chin Tsen 《Polymer Engineering and Science》2020,60(8):1832-1841
Sulfonated poly(ether ether ketone) (SPEEK) is currently considered to be one of the most potential candidates of commercial perfluorinated sulfonic acid proton exchange membranes. To balance the proton conductivity and mechanical properties of SPEEK, nano TiO2 coated carbon nanotubes (TiO2@CNTs) were prepared using a benzyl alcohol-assisted sol-gel method and then used as a new nanofiller to modify SPEEK to prepare SPEEK/TiO2@CNTs composite membranes. The thick insulated TiO2 coating layer can effectively avoid the risk of electronic short-circuiting formed by CNTs, while the hydrophilicity of TiO2 can also reduce the polar difference between CNTs and SPEEK matrix, thus promoting the homogeneous dispersion of CNTs in the composites. As a result, the composite membranes demonstrated simultaneously improved strength and proton conductivity. Incorporating 5 wt% of TiO2@CNTs exhibited 31% growth in mechanical strength when compared with pure SPEEK. Moreover, the maximum conductivity was 0.104 S cm−1 (80°C) for the composite membrane with 5 wt% of TiO2@CNTs, which was nearly twice as high as that of SPEEK membrane (0.052 S cm−1). 相似文献
2.
Han‐Lang Wu Chen‐Chi M. Ma Chun‐Chieh Lin Yie‐Chan Chiu Chih‐Yuan Chen Chin‐Lung Chiang 《应用聚合物科学杂志》2008,107(5):3236-3243
Poly(arylene ether benzonitrile) (PAEBN) was synthesized with 2,6‐dichlorobenzonitrile and biphenol. PAEBNs with various molecular weights (MWs), 1,640,000 and 185,000 g/mol, were synthesized by control of the stoichiometry of the monomers and were blended with sulfonated poly(ether ether ketone) (SPEEK). The effects of MW on the water uptake, swelling, methanol permeability, and proton conductivity of the SPEEK/PAEBN blend membranes were investigated. The molecular mobility of the SPEEK/PAEBN blends was also examined in this study. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
3.
The behavior of sulfonated poly(ether ether ketone) (sPEEK) membranes in ethanol–water systems was studied for possible application in direct ethanol fuel cells (DEFCs). Polymer membranes with different degrees of sulfonation were tested by means of uptake, swelling, and ethanol transport with dynamic measurements (liquid–liquid and liquid–gas systems). Ethanol permeability was determined in an liquid–liquid diffusion cell. For membranes with an ion‐exchange capacity (IEC) between 1.15 and 1.75 mmol/g, the ethanol permeability varied between 5 × 10?8 and 1 × 10?6 cm2/s, being dependent on the measuring temperature. Ethanol and water transport in liquid–gas systems was tested with pervaporation as a function of IEC and temperature. Higher IEC accounted for higher fluxes and lower water/ethanol selectivity. The temperature had a large effect on the fluxes, but the selectivity remained constant. Furthermore, the membranes were characterized with proton conductivity measurements. The proton diffusion coefficient was calculated, and a transition in the proton transfer mechanism was found at a water number of 12. Membranes with high IEC (>1.6 mmol/g) exhibited larger proton diffusion coefficients in ethanol–water systems than in water systems. The membrane with the lowest IEC exhibited the best proton transport to ethanol permeability selectivity. The use of sPEEK membranes in DEFC systems depends on possible modifications to stabilize the membranes in the higher conductive region rather than on modifications to increase the proton conductivity in the stable region. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
4.
A novel series of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) were prepared by aromatic nucleophilic polycondensation with different ratios of 1,3‐bis(3‐sodium sulfonate‐4‐fluorobenzoyl)benzene to 1,3‐bis(4‐fluorobenzoyl)benzene. 1H‐NMR spectroscopy was used to confirm the degrees of sulfonation (DS) of the polymers. Thermal stabilities of the SPEEKKs in acid form were characterized by thermogravimetric analysis (TGA), which showed that SPEEKKs were excellently thermally stable at high temperatures. SPEEKK polymers can be easily cast into tough membranes. Both of proton conductivity and methanol diffusion coefficient have been tested in this article. Other properties of the SPEEKK membranes were investigated in detail. The results show that the SPEEKK membranes are promising in proton exchange membrane fuel cells (PEMFCs) application. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
5.
A series of bromomethylated poly(arylene ether ketone)s (PAEKs) with different contents of bromine tethered to the benzyl groups were successfully synthesized and characterized in this work. For this purpose, poly(arylene ether ketone) with 3,3′,5,5′‐tetramethyl‐4,4′‐dihydroxybipheny moiety (PAEK‐TM) was prepared by the aromatic nucleophilic polycondensation, and then the PAEK‐TM has benzylic methyl groups that were converted to bromomethyl groups by a radical reaction using N‐bromosuccinimide. Then, the bromomethylbenzyl groups in the membrane was converted to quaternary ammonium moieties in TMPAEK‐NOH. 1H‐NMR measurements were used to characterize and confirm the structures of the resulting PAEK‐x‐BrTM and TMPAEK‐NBr derivatives (x refers to the molar percentage of bromine introduced per repeating units). TGA analysis showed that PAEK‐x‐BrTM exhibited a very low‐decomposition temperature at about 200°C corresponding to the C Br bond cleavage. The hydroxide conductivity of TMPAEK‐NOH membrane was 8 mS cm−1 at room temperature, while the water uptake of TMPAEK‐NOH membrane was 22.3% at 20°C and 32.6% at 60°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
6.
The effects of heat treatment on the properties of membranes prepared from blends of poly(ether sulfone)/sulfonated poly(phenylene sulfide) (SPPS) and phenolphthalein poly(ether ether ketone)/SPPS were studied in detail. The membranes' fundamental properties, including water content, transport number, diffusion coefficient of electrolytes, flux, and so on, changed with both treated temperature and time, whereas the ion‐exchange capacity and electrical resistance remained approximately unchanged. The trends may have been due to the possible structural change resulted from the shrinking of the polymers forming the membranes. Furthermore, the membranes also retained a good physical appearance at temperatures below 220°C. Therefore, a series of heterogeneous membranes with desired conductivities and selectivities as well as proper water contents, which could satisfy different industrial purposes, such as electrodialysis, diffusional dialysis, and proton exchange, were achieved by simple heat treatment for a proper time and at a proper temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 494–499, 2005 相似文献
7.
The sulfonated poly(ether ether ketone ketone)/phosphotungstic acid (SPEEKK/PWA) composite membranes were researched for proton exchange membranes. The effect of casting condition on the properties of membranes was studied in detail. The study showed that the casting condition has great influence on the membrane properties because of the hydrogen bond between the SPEEK and PWA and the interaction between the SPEEKK and dimethylformamide (DMF). The PWA particles are well crystallized on the surface when the velocity of the solvent volatilization is very slow under the SEM. The study will favor further research on excellent composite membranes for proton exchange membrane fuel cells. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4020–4026, 2007 相似文献
8.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐m‐phenylenediamine (BPPD), was prepared by condensation of m‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). A series of novel poly(ether amide ether ketone) (PEAEK)/poly(ether ketone ketone) (PEKK) copolymers were synthesized by the electrophilic Friedel‐Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of diphenyl ether (DPE) and BPPD, over a wide range of DPE/BPPD molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influence of reaction conditions on the preparation of copolymers was examined. The copolymers obtained were characterized by different physicochemical techniques. The copolymers with 10–25 mol % BPPD were semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide linkages in the main chains. The copolymers III and IV with 20–25 mol % BPPD had not only high Tgs of 184–188°C, but also moderate Tms of 323–344°C, having good potential for the melt processing. The copolymers III and IV had tensile strengths of 103.7–105.3 MPa, Young's moduli of 3.04–3.11 GPa, and elongations at break of 8–9% and exhibited outstanding thermal stability and good resistance to organic solvents. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
9.
A novel monomer, bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide, was synthesized through the reaction of bis(4‐chloroformylphenyl) phenyl phosphine oxide with fluorobenzene. Three poly(ether ether ketone ketone)s derived from bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide and different aromatic bisphenols were prepared by aromatic nucleophilic substitution reactions. The resulting polymers had inherent viscosities in the range of 0.55–0.73 dL/g. The structures of the poly(ether ether ketone ketone)s were characterized with Fourier transform infrared and 1H‐NMR. Thermal analysis indicated that the glass‐transition temperatures of the poly(ether ether ketone ketone)s were higher than 200°C, and the 5% weight loss temperatures in nitrogen were higher than 463°C. All the polymers showed excellent solubility in polar solvents such as N‐methyl‐2‐pyrrolidone, dimethylformamide, and dimethylacetamide and could also be dissolved in chlorinated methane. The polymers afforded transparent and flexible films by solvent casting. Organic phosphorous moieties also imparted good flame‐retardancy to the polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
10.
A series of thio‐containing poly(ether ether ketone) (PEESK) polymers was synthesized by the introduction of thio groups from 4,4′ thiodiphenol (TDP) into the poly(ether ether ketone) (PEEK) structure via reaction between the phenol and aromatic fluoride groups. The effect of the thio groups on the properties of the PEESK materials was investigated. Differential scanning calorimetry (DSC) analysis and X‐ray diffraction (XRD) patterns show a depression in the crystallinity of the PEESKs with incorporation of the content of thio groups in the backbones. The crystalline structure was identified as an orthorhombic structure with lattice constants of a = 7.52 Å, b = 5.86 Å and c = 10.24 Å for all crystallizable PEESKs. The crystalline structures of the thio‐containing PEEK polymers were the same as that of the neat PEEK, which means the thio‐containing block in the whole thio‐containing PEEK molecule is almost excluded from the crystalline structure and the crystals are completely formed by ‘non‐thio’ blocks only. Due to the glass transition temperature (Tg) and melting temperature (Tm) depression with increase in the TDP content in the reaction system, the processability of the resultant thio‐containing PEEKs could be effectively improved. Copyright © 2004 Society of Chemical Industry 相似文献
11.
The morphology and bulk properties of microporous membranes based on poly (ether ether ketone) (PEEK) have been investigated as a function of initial casting composition and thermal and mechanical processing history. Membranes were prepared via solid—liquid phase separation of miscible blends of PEEK and polyetherimide (PEI), with subsequent extraction of the PEI diluent. Scanning electron microscopy studies revealed a microporous morphology with two distinct pore size scales corresponding to diluent extraction from interfibrillar and interspherulitic regions, respectively. The membrane structure was sensitive to both initial blend composition and crystallization temperature, with the resulting pore size distribution reflecting the kinetics of phase separation. For membranes prepared with lower initial diluent content or at lower crystallization temperatures, mercury intrusion porosimetry indicated a relatively narrow distribution of fine interfibrillar pores, with an average pore size of approximately 0.04 microns. Membranes prepared at higher diluent content or at higher crystallization temperatures displayed a broad pore distribution, with a sizeable population of coarse, interspherulitic pores (0.1 to 1 μm in size). Uniaxial drawing led to a fibrillated network structure with markedly higher water flux characteristics compared to the as-cast membranes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2347–2355, 1997 相似文献
12.
Novel proton conducting membranes based on copolymers containing hydroxylated poly(ether ether ketone) and sulfonated polystyrenes 下载免费PDF全文
Tianwei Luo Hulin Xu Zhong Li Shuitao Gao Zhou Fang Zeyu Zhang Fang Wang Bing Ma Changjin Zhu 《应用聚合物科学杂志》2017,134(34)
A novel series of hydrocarbon‐based copolymers containing flexible alkylsulfonated groups and hydroxylated poly(ether ether ketone) backbones was designed and prepared as proton conducting membranes. Among the membranes, the membrane SPO3–(PMS–PSBOS)2 with the ion exchange capacity 1.70 showed good proton conductivity at 0.137 S/cm at 80 °C, which was two times as much as that of the control membrane SPO. Further, incorporating the sulfonated graphene oxide (s‐GO) into SPO3–(PMS‐PSBOS)2 leads to the composite membrane SPO3–(PMS–PSBOS)2–SGO, which exhibited higher proton conductivity compared to Nation 117 and the native membrane SPO3–(PMS–PSBOS)2. In addition, the composite membrane SPO3–(PMS–PSBOS)2–SGO showed well‐defined phase separated structures and high selectivity (1.40 × 105 Ss/cm3), which were about three times as that of Nafion 117 (0.52 × 105 Ss/cm3). These results suggested that these membranes are promising materials for direct methanol fuel cell (DMFC) applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45205. 相似文献
13.
4,4′‐Bis(4‐phenoxybenzoyl)diphenyl was prepared by the Friedel–Crafts reaction of 4‐bromobenzoyl chloride and diphenyl followed by condensation with potassium phenoxide. Novel aromatic poly(ether ketone diphenyl ketone ether ketone ketone)s were obtained by the electrophilic Friedel–Crafts solution copolycondensation of 4,4′‐bis(4‐phenoxybenzoyl)diphenyl with a mixture of isophthaloyl chloride and terephthaloyl chloride over a wide range of isophthaloyl chloride/terephthaloyl chloride molar ratios in the presence of anhydrous aluminum chloride and N‐methylpyrrolidone in 1,2‐dichloroethane. The influence of the reaction conditions on the preparation of the copolymers was examined. The copolymers were characterized with different physicochemical techniques. Because of the incorporation of diphenyl, the resulting copolymers exhibited outstanding thermal stability. The glass‐transition temperatures were above 174°C, the melting temperatures were above 342°C, and the 5% weight loss temperatures were above 544°C in nitrogen. All these copolymers were semicrystalline and insoluble in organic solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
14.
Novel aromatic sulfonated poly(ether ether sulfone)s (SPEESs) with tert‐butyl groups were synthesized by aromatic nucleophilic polycondensation of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone (SDCDPS), 4,4′‐dichlorodiphenylsulfone (DCDPS), and tert‐butylhydroquinone (TBHQ). The resulting copolymers showed very good thermal stability and could be cast into tough membranes. The morphology of the membranes was investigated with atomic force microscopy. The proton conductivity of SPEES‐40 membranes increased from 0.062 S/cm at 25°C to 0.083 S/cm at 80°C, which was higher than the 0.077 S/cm of Nafion 117 under the same testing conditions. These copolymers are good candidates to be new polymeric electrolyte materials for proton exchange membrane fuel cells. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1443–1450, 2007 相似文献
15.
Weihua Zhou Jichun Xiao Yiwang Chen Rong Zeng Shuqin Xiao Xiaohui He Fan Li Caisheng Song 《应用聚合物科学杂志》2010,117(3):1436-1445
A series of sulfonated poly(ether sulfone ether ketone ketone) (SPESEKK) with different degree of sulfonation (DS) are prepared by the postsulfonation of PESEKK using chlorosulfonic acid as sulfonating agent and concentrated sulfuric acid as solvent. The chemical structures of the polymers are analyzed by the proton nuclear magnetic resonance. The thermal properties of the SPESEKK show that they are greatly influenced by the DS value and sulfonation time. The water uptake, proton conductivity, and Ion exchange capacity values increase as the sulfonation time increasing. The methanol permeability of the SPESEKK in the range of 7.02 × 10?8 to 4.477 × 10?7 cm2 s?1, is one or two orders of magnitude lower than that of Nafion 115. The morphology of the SPESEKK membranes is investigated by scanning electron microscope. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
16.
tert-Butylphenyl-terminated disulfonated poly(arylene ether sulfone) random copolymers with a sulfonation degree of 35 mol% (BPS35) and controlled molecular weights (Mn), 20-50 kg mol−1, were successfully prepared by direct copolymerization of the two activated halides, 4,4′-dichlorodiphenyl sulfone (DCDPS) and 3,3′-disulfonate-4,4′-dichlorodiphenyl sulfone (SDCDPS) with 4,4′-biphenol and the endcapper, 4-tert-butylphenol. Dilute viscosity measurements of the BPS35 random copolymers were successfully conducted in NMP containing various concentrations of LiBr from 0.01 to 0.2 M and mostly at 0.05 M according to the measured theory. The effects of salt concentration and molecular weights of the copolymers on the viscometric behavior were studied and compared with published data for sulfonated polystyrene. The charge density parameter (ξ) for the BPS35 copolymers was determined to be smaller than 1, suggesting that no counterion condensation occurs. Studies of the effect of ionic strength (I) on the intrinsic viscosities ([η]) under theta condition were obtained by plotting [η] vs. I−1/2 and extrapolating to infinite ionic strength. For salt-free BPS35 solutions, the viscometric behavior was shown to fit well with the Liberti-Stivala equation, providing a way to determining intrinsic viscosity when the copolymer charge is fully screened. Intrinsic viscosity and molecular weight characterization of BPS35 copolymers by SEC and static light scattering are also presented. The results are very useful for characterizing polymeric electrolyte membrane (PEM) for fuel cells, reverse osmosis and ionic transducer membranes. 相似文献
17.
Development of alternate materials to Nafion, based on ionically conducting polymers and their blends is important for the wider applications of proton exchange membrane fuel cells. In this work, blends of sulfonated poly(ether ether ketone) (SPEEK) with poly(ether sulfone) (PES) are investigated. SPEEK with various ion exchange capacity (IEC) was prepared and blended with PES, which is nonionic and hydrophobic in nature. A comparative study of the water uptake, proton conductivity, and thermo‐mechanical characteristics of SPEEK and the blend membranes as a function of the IEC is presented. Addition of PES decreases the water uptake and conductivity of SPEEK. Chemical and thermal stability and mechanical properties of the membrane improve with the addition of PES. The effect of water content on the thermo‐mechanical properties of membranes was also studied. The morphology of blend membranes was studied using SEM to understand the microstructure and miscibility of the components. On the basis of the results, a plausible microstructure of the blends is presented, and is shown to be useful in understanding the variation of different properties with blending. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
18.
Mechanical properties such as the tensile modulus, yield (break) strength, and elongation to break (or yield) are measured for multiphase poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) blends. Specimens with three different levels of thermal histories (quenched, as‐molded, and annealed) are prepared in order to study their effects on the mechanical properties of PEEK/PES blends. Synergistic behavior is observed in the tensile modulus and tensile strength of the blends in almost the whole range of compositions. The ductility of quenched blends measured as the elongation to break (yield) shows an unexpected synergistic behavior in the blend containing 90 wt % PEEK, although a negative deviation from additive behavior is observed in the rest of the compositions. A ductile–brittle transition is observed between 50 and 75 wt % PEEK in the blend. The ductile–brittle transition in as‐molded blends shifts to 75–90 wt % PEEK. Annealed blends show predominantly brittle behavior in the whole composition range. The experimental data are further correlated with the theoretically predicted results based on various composite models. Although the prediction based on these equations fails to fit the experimental data in the whole composition range, the simplex equations that are normally used for blends showing synergistic behavior produced a reasonable fit to the experimental data. The mechanical properties obtained for different blend compositions are further correlated with their morphology as observed by scanning electron microscopy. Morphological observation shows a two‐phase morphology in PES‐rich blends, which is an interlocked morphology in which the disperse phase is not clearly visible in PEEK‐rich blends, and a cocontinuous type of morphology for a 50/50 composition. Considerable permanent deformation of both the disperse and matrix phase, especially in the case of quenched tensile specimens, demonstrates the remarkable adhesion present between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2887–2905, 2003 相似文献
19.
Proton exchange membranes based on poly(vinylidene fluoride) and sulfonated poly(ether ether ketone) 总被引:1,自引:0,他引:1
Blend membranes were obtained by solution casting from poly(vinylidene fluoride) (PVDF) and sulfonated poly(ether ether ketone) (SPEEK) in N,N-dimethylacetamide (DMAc). DSC and XRD were used to characterize the structure of the blend membranes. The effect of PVDF content on the membrane properties was investigated. The methanol permeability, water uptake and the swelling ratio of blend membranes decreased with the increase of PVDF content. Though the proton conductivity decreased upon the addition of PVDF, they were still comparable to that of Nafion® 117 membrane. Higher selectivities were also found for most blend membranes in comparison with Nafion® 117 membrane. The effect of methanol concentration on solution uptake, swelling ratio and methanol permeability of the blend membranes was also studied. 相似文献
20.
The thermal properties of blends of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) prepared by screw extrusion were investigated by differential scanning calorimetry. From the thermal analysis of amorphous PEEK–PEI blends which were obtained by quenching in liquid nitrogen, a single glass transition temperature (Tg) and negative excess heat capacities of mixing were observed with the blend composition. These results indicate that there is a favorable interaction between the PEEK and PEI in the blends and that there is miscibility between the two components. From the Lu and Weiss equation and a modified equation from this work, the polymer–polymer interaction parameter (χ12) of the amorphous PEEK–PEI blends was calculated and found to range from −0.058 to −0.196 for the extruded blends with the compositions. The χ12 values calculated from this work appear to be lower than the χ12 values calculated from the Lu and Weiss equation. The χ12 values calculated from the Tg method both ways decreased with increase of the PEI weight fraction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 733–739, 1999 相似文献