首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Al-Zn-Mg-Cu合金为对象,研究了挤压温度对合金组织、织构及力学性能的影响。结果表明:当挤压温度为390~500℃时,随着挤压温度的升高,挤压态棒材发生动态再结晶程度由2.4%逐渐增大到41.3%,动态再结晶晶粒尺寸逐渐增大,而经固溶时效后,晶粒尺寸呈先增大后减小的变化趋势,其中挤压温度为430℃时的晶粒尺寸最大。挤压棒材固溶时效后的强度和伸长率均呈先增大后减小的趋势,其中挤压温度为430℃时的抗拉强度、屈服强度和伸长率均较高,分别为678.1 MPa、618.3 MPa和9.2%。与晶粒尺寸较小的时效态挤压棒材相比,晶粒尺寸较大的棒材具有更高的强度,其原因是由于大晶粒棒材中存在较多的硬取向Copper织构({112}?111?)和S型织构({123}?634?)。  相似文献   

2.
通过单辊旋淬快速凝固技术制备Cu-3.2Ni-0.7Si(wt%)合金薄带。研究了不同旋淬速度(凝固速度)和时效处理对合金微观组织、导电率和力学性能的影响。结果表明,随着凝固速度的增大,铸态合金的晶粒明显细化,导电率降低,显微硬度和拉伸强度升高。铸态合金在同一温度进行时效处理,随着时效时间的增加,合金的电导率呈升高趋势,而合金的显微硬度和拉伸强度先升高后降低。铸态合金的导电率随凝固速度的增大而降低是基体晶格畸变程度增大所致;合金时效处理后导电率升高是由于第二相析出明显消除晶格畸变的结果。铸态合金显微硬度和拉伸强度随凝固速度增大而升高是细晶强化的结果;时效处理后,合金的显微硬度和抗拉强度明显提高是第二相强化的结果,而过度时效导致显微硬度和拉伸强度降低的主要原因是第二相的粗化团聚所致。  相似文献   

3.
研究了时效工艺对往复挤压Mg-5Sn-1.5Al-1Zn-1Si合金显微组织和力学性能的影响,并分析了时效处理的作用机制。结果表明:合金时效处理后晶粒尺寸略有增大,晶粒分布不均匀,晶粒直径10μm左右;晶界处的块状颗粒相部分溶解,在晶界或晶内析出1μm左右的二次颗粒相。时效后Mg-5Sn-1.5A1-1Zn-1Si合金的伸长率呈下降趋势,而抗拉强度、屈服强度和硬度大幅度升高,其中抗拉强度和屈服强度高达323 MPa和272 MPa。  相似文献   

4.
蒋云泽  张豪  许俊华 《热加工工艺》2016,(4):233-236,239
材料经过热挤压和双级固溶处理后,在不同的回归再时效工艺条件下进行了回归再时效处理,测试了时效态合金的抗拉强度、屈服强度、硬度和导电率,并观察其显微组织,研究回归温度和时效对合金组织和性能的影响。结果表明:采用温度160℃回归3 h的回归再时效处理可以使试样抗拉强度达到695 MPa,屈服强度达到680 MPa,硬度达到224.08 HV,导电率达到29.66%IACS。  相似文献   

5.
时效处理和La含量对AZ91合金组织和力学性能的影响   总被引:1,自引:0,他引:1  
借助XRD,SEM,EDS和显微硬度仪等分析测试手段,研究了时效处理和La含量对真空精炼的AZ91合金显微组织和力学性能的影响.结果表明:时效处理可以使第二类β相大量析出,且β相呈不连续层片状沿晶界两侧分布.随La含量的增加,β相的尺寸逐渐减小,而α相的尺寸则呈现先减小后增加的趋势.铸态和时效态试样的力学性能参数均随La含量的增加呈现出先增加后减小的趋势.时效态试样的抗拉强度、屈服强度、延伸率和Vickers硬度分别比铸态试样提高12.65%,16.85%,13.71%和37.24%.当La含量达到0.1648%时,抗拉强度、屈服强度、延伸率和Vickers硬度分别达到276 MPa,208 MPa,13.85%和132HV.  相似文献   

6.
稀土铈对AZ61变形镁合金组织和力学性能的影响   总被引:39,自引:1,他引:39  
研究了不同稀土铈含量对AZ61合金显微组织和力学性能的影响.实验发现:加入稀土铈后,AZ61合金铸态组织的β相变少、变细,铸态晶粒细化;大部分铈与铝结合生成高熔点、高热稳定性的稀土相Al4Ce;在热挤压和退火过程中,Al4Ce能够阻碍晶粒或亚晶粒的长大,使晶粒细化.适量的稀土铈提高了挤压态合金的强度、延伸率和显微硬度;而过量的稀土铈则会导致AZ61合金的性能下降;含1.0%稀土铈的挤压态合金可得到最高的抗拉强度308.1MPa、最高屈服强度180.1MPa、最大的显微硬度HV80.5和最高的延伸率14.2%;所有试验合金的断裂方式是解理断裂.  相似文献   

7.
本文以Mg-3Al-3Ca-0.5Mn合金为研究对象,研究了在相同挤压比(挤压比为61),不同挤压温度(300℃、350℃、400℃)下制备的热挤压成型棒材的组织及力学性能。结果表明:较低的挤压温度(300℃)下,合金晶粒由等轴晶转变为混晶组织,合金的抗拉强度和屈服强度逐渐降低,但是延伸率显著提高。挤压温度为300℃时,动态再结晶不完全,合金中的第二相存在团簇现象,合金具有最佳的抗拉强度和屈服强度,分别为424MPa和393MPa;随着挤压温度升高到400℃时,动态再结晶更加完全,第二相呈弥散均匀分布,合金延伸率为12.7%。  相似文献   

8.
探讨了不同变形量对电气化铁路接触线用Cu-0.42Cr-0.13Zr-0.11Y合金时效性能和力学性能的影响。研究结果表明,合金经950℃、1h固溶处理后施以不同程度冷变形,再进行480℃时效处理,比合金固溶后直接时效可显著提高合金的电导率和显微硬度;随变形量逐渐增大,合金强度不断升高,抗拉强度最高可达645MPa,而延伸率和导电率略有降低。当二次拉拔变形量为75.0%时,合金的抗拉强度、导电率和延伸率分别为605.6MPa、80.79%IACS和10.2%。  相似文献   

9.
以喷射成形7055-T6铝合金为对象,借助万能力学试验机、电化学工作站、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等手段研究热锻对挤压合金显微组织与性能的影响。结果表明:挤压合金的纵向抗拉强度为705 MPa,屈服强度为665 MPa,断口形貌表现为沿晶断裂,而锻造后合金的抗拉强度、屈服强度分别下降了33 MPa和34 MPa,但伸长率、硬度和导电率均有所上升,断口形貌表现为韧性断裂;挤压合金晶粒较均匀,组织有方向性,但热锻后合金部分晶粒长大合并,部分晶粒破碎;合金晶界析出相中的主要元素含量均比基体高,且热锻后合金晶界析出相中的Mg、Zn元素含量降低,Cu元素含量升高;合金经峰值时效后,晶内GP区和η′析出相为主,晶界析出相近似连续分布,导致合金耐蚀性不好;锻造后晶界和晶内析出相均长大粗化,使得合金强度下降,耐蚀性提高。  相似文献   

10.
采用显微组织观察、拉伸试验、密度测试等研究了不同挤压铸造压力对Mg-4Zn-1.2Y合金显微组织与力学性能的影响。结果表明:随着挤压压力的增加,Mg-4Zn-1.2Y合金的平均晶粒尺寸和第二相体积分数逐渐减小,挤压压力从0增加到150 MPa时,合金晶粒细化明显,挤压压力超过150 MPa后,合金晶粒细化趋势变缓。随着挤压压力的增加,Mg-4Zn-1.2Y合金的抗拉强度、屈服强度、伸长率及密度均逐渐增加。与挤压压力为0 MPa的合金相比,挤压压力150 MPa的合金抗拉强度、屈服强度和伸长率分别提高了24.4%、23.3%和72.7%,力学性能显著提高,挤压压力超过150 MPa后,合金力学性能提高幅度变缓。  相似文献   

11.
以LZ92镁锂合金为研究对象,采用Deform-3D软件对其正挤压变形方式进行数值模拟。研究了不同挤压比(分别为10,20和30)对等效应力和等效应变的影响。结合正挤压变形的分析结果进行热挤压实验,对变形后的试样进行显微组织观察和力学性能测试。结果表明:随着挤压比的增大,试样的等效应变增大,均匀性增强,等效应变以0.5的增长速度线性增长,最大等效应变高达3;LZ92镁锂合金再结晶越充分,晶粒细化越明显,晶粒尺寸由45μm细化至约15μm。LZ92变形镁锂合金具有优异的力学性能,随着挤压比的增大,屈服强度、抗拉强度和变形量显著提升,抗拉强度逐渐增大至203.1 MPa,较铸态提高了76%,屈服强度以40 MPa的增长速度线性增长。  相似文献   

12.
以汽车用7A85铝合金为研究对象,研究热处理工艺对7A85铝合金显微组织、显微硬度、电导率和力学性能的影响。结果表明,随终时效温度升高和时间延长,合金的导电率持续增大,而硬度和各项力学性能先增加后减小。合金经120℃×4 h+157℃×8 h时效处理,硬度为203.0 HV,导电率为32.8%IACS,屈服强度达到563 MPa,抗拉强度达到751 MPa,断后伸长率为26.3%。  相似文献   

13.
研究了添加稀土元素的不同高铝含量的变形挤压态镁合金的微观组织和力学性能。结果表明,铝含量的增加,挤压合金晶粒的得到了明显的细化,平均晶粒尺寸为(12±4)μm。挤压态合金的显微硬度高于固溶态合金的显微硬度;随着铝含量的增加,合金的时效硬化行为得到明显的改善。这些主要是由于在挤压过程中晶粒的细化和沿着挤压方向第二相的析出。另外,随着铝含量的增加,合金的屈服强度和抗拉强度也有所提高,分别达到了306和348 MPa。这主要取决于晶粒的进一步细化和析出相体积分数的增加。因镁稀土相和β-Mg17Al12相都为脆性相,铝含量的增加引起析出相体积分数的增加,也同时导致合金的伸长率有所下降。  相似文献   

14.
将直径为80 mm的Mg-0.7Sm-0.3Zr合金铸锭分别在350、380和410℃下挤压成直径为16 mm的棒材。利用光学显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)技术、室温拉伸实验等研究了在不同温度挤压后Mg-0.7Sm-0.3Zr合金的显微组织、织构与力学性能。结果表明:铸态合金的组织主要为α-Mg基体,晶粒粗大,尺寸为20.7μm。经过挤压后晶粒明显细化,410℃挤压后平均晶粒尺寸为2.83μm,沿挤压方向出现很多细晶带交替分布。随着挤压温度的升高,再结晶分数逐渐增加,合金强度逐渐下降,断后伸长率逐渐增加。410℃挤压棒材的抗拉强度、屈服强度和断后伸长率分别为202 MPa、144 MPa和44.4%。  相似文献   

15.
研究了挤压比对6201合金线材的微观组织、力学性能和导电性能的影响.结果表明:随着挤压比的增大,T6态合金的强化相β'(Mg2Si)弥散质点的尺寸减小,弥散程度增加,合金线材的抗拉强度,延伸率和电阻率增大,其增大的趋势随着挤压比的进一步增加而逐渐减小;当挤压比一定时,随着在线固溶温度与时效温度的升高,线材的力学性能下降,导电性能升高.当挤压比为16.5~29.7,线固溶温度为520~540℃,时效温度为150~160℃时,合金力学性能和导电性能分别为:σb=310~328 MPa,δ=8.5%~10.3%,ρ=0.032 2~0.032 8nΩ·m,较好地满足Al-Mg-Si导线标准要求.采用合理的挤压比,可直接生产性能良好的铝合金导电线材.  相似文献   

16.
Mg-Mn-RE合金挤压和锻造变形后的组织与力学性能   总被引:1,自引:1,他引:0  
对Mg-Mn-RE合金进行挤压和锻造变形处理,研究不同变形方式对其显微组织及力学性能的影响.结果表明:合金挤压变形过程中发生了动态再结晶,晶粒明显细化,挤压变形后硬度、抗拉强度、屈服强度和伸长率相对于铸态都有所提高,分别为68HV、254.9 MPa、190.5 MPa和26%;室温锻造变形后,晶粒扭曲变形,稀土化合物呈弥散均匀分布,硬度相对于挤压变形后有所提高,相对变形量为28%时,合金硬度为101 HV.  相似文献   

17.
通过对不同含Mn量的Mg-6Al-xMn合金进行熔炼、制坯和反向挤压,研究Mn含量对Mg-6Al镁合金组织与力学性能的影响。结果表明,在试验范围内随着Mn含量的增加Mg-6Al-xMn合金凝固组织逐渐细化,β-Mg17Al12相逐渐减少,而出现Al-Mn相,晶粒大小由含Mn量0.3%(质量分数)时的137μm减小到含Mn量0.9%时的73μm,幅度降低为47%。不同含Mn量的Mg-6Al-xMn合金经400℃,12h均匀化处理后,β-Mg17Al12相消失。不同含Mn量的Mg-6Al-xMn合金经挤压后,挤压棒材的晶粒也随Mn含量的增加而逐变小;挤压棒材的抗拉强度、屈服强度和延伸率均随着Mn含量的增加先增加后降低。Mn含量为0.5%的挤压棒材抗拉强度和屈服强度最高,分别为293MPa,173MPa;Mn含量为0.7%的挤压棒材延伸率最大,达20%。  相似文献   

18.
采用快速凝固/粉末冶金法制备AZ91镁合金,研究了不同挤压比对AZ91镁合金室温力学性能及显微组织结构的影响。结果表明:热挤压后的密度已接近理论值:挤压棒材的抗拉强度和伸长率分别为383.23MPa和9.4%;随着挤压比的增加,晶粒变得细小;合金的抗拉强度、屈服强度和伸长率提高;热挤压态AZ91镁合金室温拉伸时呈现韧性断裂特征。  相似文献   

19.
采用光学显微镜、洛氏硬度仪、万能材料试验机和导电率测试仪等研究了时效处理对7022铝合金力学性能和导电率的影响.结果 表明:经过470℃固溶处理420 min后的合金的显微硬度为71.3 HRB,导电率为28.0%IACS,抗拉强度为525.5 MPa,伸长率为11.25%;时效处理过程中,合金的显微硬度、抗拉强度和导电率随着时效时间的增加呈现先升高后降低的变化趋势,而伸长率则与它们呈相反的变化趋势.150℃时效14 h后合金的硬度和导电率分别为89.5 HRB和31.2 %IACS,110℃时效10h后抗拉强度达到峰值,为607.85MPa.综合考虑7022合金的导电率与力学性能,其最佳热处理制度为470℃固溶420 min+ 150℃时效14 h,此时合金的硬度值为89.5 HRB,导电率为31.2 %IACS,抗拉强度为595.73 MPa,合金力学性能和导电率的变化为时效时间和时效温度综合作用的结果.  相似文献   

20.
通过对铸态、固溶态以及固溶加峰时效态的合金的力学性能进行测试表征,研究热处理工艺对合金力学性能的影响。实验结果表明,铸态合金的屈服强度和抗拉强度分别为152MPa和213MPa,延伸率为4.6%;固溶处理后屈服强度和抗拉强度分别提高到173MPa和249MPa,延伸率为11.2%;峰时效处理后合金的屈服强度和抗拉强度出现较大提高,分别为324MPa和345MPa,延伸率却下降到3.9%。在固溶处理后的合金延伸率最高,具有良好的塑性加工能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号