首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that cyclosporin A (CsA) may affect ricin A-chain immunotoxin (RTA-IT) therapy. In this study, we evaluated the ability of CsA and its nonimmunosuppressive analog, SDZ PSC 833, to enhance anti-CD5 T101 RTA-ITs in vitro. Both 4 mumol/L CsA and 4 mumol/L SDZ PSC 833 significantly and specifically enhanced the cytotoxic activity of T101 RTA-IT on the human lymphoblastic T-cell line, CEM III (101-fold and 105-fold, respectively). Furthermore, these Cs also enhanced the cytotoxicity of the more potent T101 F(ab')2 RTA-IT (ninefold and eightfold, respectively). The effect of human plasma, originating from four patients enrolled in a phase I high-dose CsA regimen, was examined on T101 RTA-IT cytotoxicity on CEM III cells. In each case, with plasma CsA levels between 3,090 and 4,860 ng/mL (2.5 to 4 mumol/L), a significant increase in T101 RTA-IT-mediated cytotoxicity was observed ranging from 31% to 60%. Neither CsA nor SDZ PSC 833 affected the rate of RTA-IT binding, internalization, intracellular trafficking, or degradation. Analysis of internalized T101 RTA-IT molecules showed that these were essentially intact, which suggests that these enhancers may act only on a small population of RTA-ITs that escapes present investigational techniques. In conclusion, because the concentrations used are clinically achievable, Cs appear to be promising agents for in vivo enhancement of RTA-ITs.  相似文献   

2.
P-glycoprotein(P-gp)- related resistance is one of the major obstacles in treating leukemia patients. Therefore, it is of clinical interest to find new potential modulators and compare their P-gp-modulating efficacy. The present analysis investigated the influence of P-gp modulators, such as verapamil, tamoxifen, droloxifene E, droloxifene Z, SDZ PSC 833 (PSC 833) and dexniguldipine in a leukemic T-cell line (CCRF-CEM) and its P-gp-resistant counterparts (CCRF-CEM/ACT400 and CCRF-CEM/VCR1000). P-gp expression was assessed with an immunocytological technique using the monoclonal antibody 4E3.16. It was characterized as the percentage of P-gp positive cells and also expressed as a D value by using the Kolmogorov Smirnov statistic. The efficacy of P-gp modulators was determined with the rhodamine-123 accumulation test and the MTT test. An in vitro modulator concentration between 0.1 microM and 3 microM was determined, where no genuine antiproliferative effect was apparent. The modulators PSC 833 and dexniguldipine were the significant (p相似文献   

3.
4.
Multidrug resistance (MDR) is considered to be an important impediment to the effective treatment of cancer. P-glycoprotein, the drug efflux pump that mediates this resistance, can be inhibited by a wide variety of pharmacological agents, resulting in the circumvention of the MDR phenotype. SDZ PSC 833 ([3'-keto-Bmt1]-Val2]-cyclosporine), a nonimmunosuppressive cyclosporine D derivative, was identified to be a potent MDR modulator (Gaveriaux et al. J. Cell Pharmacol. 2:225-234; 1991). In this study, the interactions of P-glycoprotein with two cyclosporine derivatives, SDZ PSC 833 and cyclosporine A (CsA, Sandimmune), were analyzed. SDZ PSC 833 enhanced the sensitivity of the MDR cells to anticancer drugs by increasing the accumulation and inhibiting the efflux of cytotoxic agents from resistant cells more efficiently than CsA. The two cyclosporine analogs competed with the labeling of P-glycoprotein by a photoactive cyclosporine derivative. In addition, membrane vesicles derived from resistant cells bound SDZ PSC 833. However, CsA was transported by P-glycoprotein, whereas SDZ PSC 833 was not actively transported. This resulted in a prolonged inhibitory effect by SDZ PSC 833. The studies suggest that the binding of SDZ PSC 833 to P-glycoprotein in the absence of its transport from MDR cells mediated its high potency as an MDR reversing agent. In addition, the comparison of the two cyclosporine analogs indicated that limited chemical modifications of MDR reversing agents can affect their potential to inhibit P-glycoprotein function.  相似文献   

5.
Novel compounds, composed of two acridone moieties connected by a propyl or butyl spacer, were synthesized and tested as potential modulators of P-glycoprotein (P-gp)-mediated multidrug resistance. The propyl derivative 1,3-bis(9-oxoacridin-10-yl)-propane (PBA) was extremely potent and, at a concentration of 1 microM, increased steady state accumulation of vinblastine (VLB) approximately 9-fold in the multidrug-resistant cell line KB8-5. In contrast to the readily reversible effects of VRP and cyclosporin A on VLB uptake and similar to the effects of the cyclosporin analog PSC 833, this modulation by PBA was not fully reversed 6-8 hr after transfer of cells to PBA-free medium. Continuous exposure to 3 microM PBA was nontoxic and could completely reverse VLB resistance in KB8-5 cells. Consistent with its effects on VLB transport, the drug resistance-modulating effect of PSC 833 was significantly more persistent than that of VRP. However, the effect of PBA was, like that of VRP, rapidly reversed once the modulator was removed from the extracellular environment. PBA was able to compete with radiolabeled azidopine for binding to P-gp and to stimulate P-gp ATPase activity. However, both the steady state accumulation of PBA and the rate of efflux of PBA were similar in drug-sensitive KB3-1 and drug-resistant KB8-5 cells, suggesting that this compound is not efficiently transported by P-gp. These results indicate that PBA represents a new class of potent and poorly reversible synthetic modulators of P-gp-mediated VLB transport.  相似文献   

6.
We have compared multiple assays for the P-glycoprotein (Pgp/MDR1) phenotype in fresh and thawed adult acute leukemia to validate and quantitate measures for the expression and function of Pgp. The results are related to the Pgp-expressing KB8 and KB8-5 call lines. The most sensitive assay was the measurement of modulation of the rhodamine 123 (R123) fluorescence by 2 micromol/L PSC833, followed by the modulation of the probe calcein-AM. We also found a good intralaboratory and interlaboratory correlation between the values of the R123/PSC833 assay for fresh as well as thawed samples. In addition, the affects of PSC833 on 3H-daunorubicin (DNR) accumulation, DNR fluorescence, and 3H-vincristine accumulation were very similar. The correlation between the DNR/PSC833 and R123/PSC833 test was r = .86 (N = 51). The modulation of drug accumulation by 8 micromol/L verapamil was the some as the PSC833 effect for DNR (117%, N = 21), but was higher for vincristine in every single case (161% v 121%, N = 22; P< .001), indicating additional verapamil effects, not related to Pgp. The correlation of the staining of viable cells for Pgp with the monoclonal antibody MRK16 was r = .77 (N = 52) for the R123/PSC833 functional test and r = .84 (N = 50) for the DNR/PSC833 test. From these results it could be calculated that a maximal increase of the mean DNR accumulation of about 50% can be achieved by blocking Pgp pump activity with PSC833 in leukemic blast samples with the highest mean Pgp expression. Subpopulations of blast calls with higher Pgp activity are likely to be present. Their relevance has to be studied further. The methods outlined here allow the reliable, quantitative monitoring of the Pgp/MDR1 phenotype in leukemias in multicentered, clinical Pgp modulation studies.  相似文献   

7.
The inhibitory effects of SDZ PSC 833 (PSC833), a non-immunosuppressive cyclosporin derivative, on the P-glycoprotein (P-gp)-mediated transport of doxorubicin and vinblastine were compared with those of cyclosporin A (Cs-A). The transcellular transport of the anticancer drugs and PSC833 across a monolayer of LLC-GA5-COL150 cells, which overexpress human P-gp, was measured. Both PSC833 and Cs-A inhibited P-gp-mediated transport of doxorubicin and vinblastine in a concentration-dependent manner and increased the intracellular accumulation of doxorubicin and vinblastine in LLC-GA5-COL150 cells. The values of the 50%-inhibitory concentration (IC50) of PSC833 and Cs-A for doxorubicin transport were 0.29 and 3.66 microM, respectively, and those for vinblastine transport were 1.06 and 5.10 microM, respectively. The IC50 of PSC833 for doxorubicin transport was about 4-fold less than that for vinblastine transport, suggesting that the combination of PSC833 and doxorubicin might be effective. PSC833 itself was not transported by P-gp and had higher lipophilicity than Cs-A. These results indicated that the inhibitory effect of PSC833 on P-gp-mediated transport was 5- to 10-fold more potent than that of Cs-A, and this higher inhibitory effect of PSC833 may be related to the absence of PSC833 transport by P-gp and to the higher lipophilicity of PSC833.  相似文献   

8.
SDZ PSC 833, a non-immunosuppressive cyclosporin analogue reverses multidrug resistance (MDR) in vitro by inhibiting P-glycoprotein (P-gp) mediated drug efflux. We performed a dose escalation study of SDZ PSC 833 combined with VAD chemotherapy in refractory multiple myeloma (MM). Twenty-two MM patients who were refractory to doxorubicin/vincristine/dexamethasone (VADr, n=11) or had failed multiple regimens (n=6) or were melphalan-refractory (MELr, n=5), were treated with one to three cycles of VAD combined with oral SDZ PSC 833, which was administered at escalating dosages starting at 5 mg/kg/day to 15 mg/kg/day for 7 days. The median trough and peak blood levels of SDZ PSC 833 ranged from 461/1134 ng/ml at 5 mg/kg/day to 821/2663 ng/ml at 15 mg/kg, respectively. With addition of SDZ PSC 833 (5 mg/kg) the mean plasma AUC 0-->96 h of doxorubicin as compared with control patients treated with VAD increased from 779 to 1510 ng/ml/h (P=0.0071), while the doxorubicin clearance was reduced from 47.6 to 27.8 l/h/m2 (P=0.0002). The clearance of doxorubicinol was reduced accordingly. Because of the increased plasma AUC, the dose of doxorubicin and vincristine had to be reduced in 13 patients to 50% (n=1) or 75% (n=12). A further dose-escalation of SDZ PSC 833 did not lead to a proportional increase of doxorubicin AUC. Toxicity WHO CTC grade 2 or 3 included hypoplasia (18/22), constipation (10/22), hyponatremia (3/22) and infections (6/22). A partial response or stable disease was achieved in eight and six patients, respectively. In 17 evaluable patients the mean percentage of pretreatment bone marrow plasma cells which expressed P-glycoprotein was 40%. The pretreatment in vitro rhodamin retention in CD38++ myeloma cells was reversible by 2 microM SDZ PSC 833 with 15-98% in 7/9 tested patients. In 4/5 responding patients analyzed before and after treatment with VAD + SDZ PSC 833, a reduction of P-gp + plasma cells was observed. It is concluded, that the blood concentrations of SDZ PSC 833 attained in MM patients increase with dose after oral administration. It can be safely combined with VAD chemotherapy. SDZ PSC 833 diminishes the clearance of doxorubicin, leading to an increase of the plasma AUC of doxorubicin. In addition, it is an effective inhibitor of P-gp mediated efflux of doxorubicin in myeloma tumor cells in vitro. Therefore, a proportional dose-reduction of doxorubicin and vincristine is warranted. Phase II/III studies in refractory MM are in progress to evaluate the therapeutic efficacy of SDZ PSC 833 with VAD.  相似文献   

9.
The involvement of mdr1a P-glycoprotein (P-gP) on the tissue distribution of the multidrug resistance-reversing agent SDZ PSC 833 was assessed by use of mdr1a (-/-) mice. The mdr1a (-/-) and wild-type mdr1a (+/+) mice received a 4-h constantrate i.v. infusion (2 micrograms/min) of [14C]SDZ PSC 833. Mice were sacrificed at 0, 0.5, 1, 2 and 4 h during infusion and at 0.5, 1, 3, 8 and 24 h after stopping the infusion. Blood and tissues were analyzed on total (14C) and parental SDZ PSC 833 concentrations. Mdr1a (-/-) mice exhibited increased SDZ PSC 833 accumulation in cerebrum, cerebellum and somewhat in testes and small intestine compared with the wild-type mice. The difference between mdr1a (-/-) and (+/+) brain (cerebrum and cerebellum) penetration depended on SDZ PSC 833 blood concentrations, because this cyclosporin analog apparently governs its own brain penetration by inhibiting the P-glycoprotein pump in mdr1a (+/+) mice. Thus the mdr1a (-/-)/(+/+) ratio of brain concentrations tended to decrease and increase at high and low blood concentrations, respectively. These findings clearly demonstrate the interaction of SDZ PSC 833 with the P-glycoprotein present at the blood-brain barrier. The SDZ PSC 833 distribution in other mdr1a P-glycoprotein-expressed tissues, as well as its metabolism and elimination, was not affected by the mdr1a gene disruption. This suggests that factors other than mdr1a P-gP are involved in the disposition of this multidrug resistance-reversing agent.  相似文献   

10.
We analyzed the effect of high temperature (a 1-h incubation at 43 degrees C) on the accumulation and cytotoxicity of vinblastine and docetaxel in two model cell lines, K562 and MESSA, and their multidrug resistance (MDR) counterparts, K562/R7 and MESSA/Dx5. High temperature increased the amount of intracellular vinblastine and docetaxel significantly in MESSA cell and, to a much lesser extent, in K562 cells. MDR-positive cells retained a profound drug accumulation defect at 43 degrees C. Hyperthermia enhanced the cytotoxic effect of vinblastine (but not docetaxel) in both K562 and MESSA cells, but not in the MDR-positive variants. PSC833, a potent modulator of P-glycoprotein, induced high levels of drug accumulation in the two MDR-positive cell lines at both 37 degrees C and at 43 degrees C. PSC833 also significantly reduced the resistance levels of the two MDR-positive lines at both 37 degrees C and at 43 degrees C. The effect of hyperthermia on drug accumulation thus seems to depend on the cell line, whereas the effect on cytotoxicity depends on the type of compound. The MDR phenotype remains a therapeutic obstacle at 43 degrees C but is accessible to modulation.  相似文献   

11.
Research on multidrug resistance (MDR) has spread widely, with the emphasis on the development of therapeutic approaches. This line of research began in the early 1970s. In 1981 and 1982, calcium channel blockers such as verapamil and calmodulin inhibitors were found to enhance the intracellular levels of vincristine (VCR) and adriamycin (ADM) in resistant tumor cells by inhibiting their outward transport and to circumvent MDR in animal experiments. Since these results were noted for verapamil, various other compounds have been investigated to overcome drug resistance. Among these compounds, two compounds were evaluated in our laboratory. The non-immunosuppressive cyclosporin derivative SDZ PSC833 (PSC) has been shown to reverse MDR completely in vitro and in vivo. The second compound is MS-209, a novel quinoline derivative. MS209 completely reversed the resistance against VCR and ADM in vitro. MS209 enhanced the chemotherapeutic effects of VCR and ADM in P388/VCR- and P388/ADM-bearing mice. MS-209 has now started clinical trials in Japan. In addition to these chemical agents, monoclonal antibodies (moAb) against P-glycoprotein such as MRK16 could be useful tools for selective killing of MDR tumor cells. Furthermore another moAb MRK17 can be used against human MDR cells transfected with macrophage-colony stimulating factor (M-CSF) gene. M-CSF can act as an enhancer of antibody dependent cellular cytotoxicity (ADCC) in therapy of human MDR cancer with the anti-P-glycoprotein antibody.  相似文献   

12.
Multidrug resistance (MDR) mediated by the drug efflux pump P-glycoprotein (Pgp), may cause remission failure and relapse in patients with acute myeloid leukaemia (AML) by extruding cytotoxic agents such as anthracyclines from leukaemic cells thus allowing them to survive. Cell line data suggest that reversal of MDR is possible using modifying drugs such as cyclosporin A (CSA) and its analogue PSC 833. We have investigated the effects on cell kill of the addition of CSA and PSC 833 to daunorubicin, idarubicin, mitozantrone, etoposide and cytarabine in 52 fresh cell samples from AML patients using an MTT assay. Pgp status was determined by using monoclonal antibodies JSB-1 and MRK-16 and by assessment of rhodamine efflux. Although overall each cytotoxic-modifier combination produced significant improvements in cell kill compared to cytotoxic alone (P values ranged from P < 0.001 to P = 0.017), modifiers also produced significant cytotoxicity in their own right, and no consistent difference was seen between responses in Pgp-positive and negative groups. Up to one in three Pgp-positive samples failed to show any improvement in cell kill with the addition of CSA or PSC 833, possibly owing to co-expression of alternative resistance mechanisms not affected by the MDR modifiers. The best responses were seen when PSC 833 was added to idarubicin, with 7 out of 22 Pgp-positive cases (32%) showing five-fold improvements in cell kill or better compared to idarubicin alone. Comparison of equimolar concentrations of the two modifiers in the Pgp positive group failed to show a significant difference in cell kill, though PSC 833 was markedly superior to CSA in a minority of highly responsive samples which demonstrated clear evidence of MDR reversal. Our in vitro data suggest that MDR modifiers such as CSA and PSC 833 could play an important role in the therapy of AML and indicate the need for prospective randomised trials to assess their clinical efficacy.  相似文献   

13.
We have previously demonstrated that within 24 h of exposure of the CEM/A7R cell line to epirubicin (EPI), MDR1 gene expression is induced. The aim of the current study was to investigate the role of cyclosporin A (CyA) and PSC 833, two biochemical modulators of the classical multidrug-resistant phenotype, in this model. CEM/A7R cells were exposed to EPI in the presence or absence of various concentrations of CyA or PSC 833. MDR1 expression was assessed using Northern blot analysis and quantitated using a phosphorimager. P-glycoprotein (P-gp) expression was analyzed by the determination of MRK16 binding using flow cytometry. P-gp function was measured in an assay of [3H]daunomycin accumulation. The coincubation of CyA or PSC 833 with EPI prevented the increase in MDR1 gene expression induced by EPI alone. This effect of the two modulators was dose dependent. Neither modulator alone had any significant effect on the expression of MDR1. In these experiments, changes in MDR1 expression correlated with changes in P-gp levels (based on MRK16 binding) and P-gp function. Thus, both PSC 833 and CyA appear to prevent the induction of MDR1 gene expression caused by the short-term exposure of CEM/A7R cells to EPI.  相似文献   

14.
15.
1. P-glycoprotein, a 170-180 kDa membrane glycoprotein that mediates multidrug resistance, hydrolyses ATP to efflux a broad spectrum of hydrophobic agents. In this study, we analysed the effects of three MDR reversing agents, verapamil, cyclosporin A and [3'-keto-Bmt1]-[Val2]-cyclosporin (PSC 833), on the adenosine triphosphatase (ATPase) activity of human P-glycoprotein. 2. P-glycoprotein was immunoprecipitated with a monoclonal antibody (MRK-16) and the P-glycoprotein-MRK-16-Protein A-Sepharose complexes obtained were subjected to a coupled enzyme ATPase assay. 3. While verapamil activated the ATPase, the cyclosporin derivatives inhibited both the substrate-stimulated and the basal P-glycoprotein ATPase. No significant difference was observed between PSC 833 and cyclosporin A on the inhibition of basal P-glycoprotein ATPase activity. PSC 833 was more potent than cyclosporin A for the substrate-stimulated activity. 4. Kinetic analysis indicated a competitive inhibition of verapamil-stimulated ATPase by PSC 833. 5. The binding of 8-azido-[alpha-32P]-ATP to P-glycoprotein was not altered by the cyclosporin derivatives, verapamil, vinblastine and doxorubicin, suggesting that the modulation by these agents of P-glycoprotein ATPase cannot be attributed to an effect on ATP binding to P-glycoprotein. 6. The interaction of the cyclosporin derivatives with ATPase of P-glycoprotein might present an alternative and/or additional mechanism of action for the modulation of P-glycoprotein function.  相似文献   

16.
MCF-7 human breast cancer cells selected in Adriamycin in the presence of verapamil developed a multidrug resistant phenotype, which was characterized by as much as 100,000-fold resistance to mitoxantrone, 667-fold resistance to daunorubicin, and 600-fold resistance to doxorubicin. Immunoblot and PCR analyses demonstrated no increase in MDR-1 or MRP expression in resistant cells, relative to parental cells. This phenotype is similar to one previously described in mitoxantrone-selected cells. The cells, designated MCF-7 AdVp, displayed a slower growth rate without alteration in topoisomerase II alpha level or activity. Increased efflux and reduced accumulation of daunomycin and rhodamine were observed when compared to parental cells. Depletion of ATP resulted in complete abrogation of efflux of both daunomycin and rhodamine. No apparent alterations in subcellular daunorubicin distribution were observed by confocal microscopy. No differences were noted in intracellular pH. Molecular cloning studies using DNA differential display identified increased expression of the alpha subunit of the amiloride-sensitive sodium channel in resistant cells. Quantitative PCR studies demonstrated an eightfold overexpression of the alpha subunit of the Na+ channel in the resistant subline. This channel may be linked to the mechanism of drug resistance in the AdVp cells. The results presented here support the hypothesis that a novel energy-dependent protein is responsible for the efflux in the AdVp cells. Further identification awaits molecular cloning studies.  相似文献   

17.
18.
Five cell lines selected for resistance to the cytotoxicity of inhibitors of DNA topoisomerase II have point mutations in the gene that codes for the M(r) 170,000 form of this enzyme. In each case, the mutation results in an amino acid change in or near an ATP binding sequence of the M(r) 170,000 isozyme of topoisomerase II. We used single-strand conformational polymorphism analysis to screen for similar mutations in other drug-resistant cell lines or in leukemic cells from patients previously treated with etoposide or teniposide. We also analyzed the region of the gene that codes for amino acids adjacent to the tyrosine at position 804 of topoisomerase II which binds covalently to DNA. CEM/VM-1, CEM/VM-1-5, and HL-60/AMSA human leukemic cell lines were used as controls; 3 of 3 known mutations were detected by migration differences of polymerase chain reaction products from the RNA extracted from these three lines. A previously unknown mutation was found in the tyrosine 804 region of the M(r) 170,000 topoisomerase II expressed by CEM/VM-1 and CEM/VM-1-5 cells. Sequence analysis showed that substitution of a T for a C at nucleotide 2404 resulted in an amino acid change of a serine for a proline at amino acid 802. No mutations in any of the ATP binding sequences or in the tyrosine 804 region were detected in polymerase chain reaction products from RNA extracted from human leukemia HL-60/MX2 or CEM/MX1 cells (both cell lines selected for resistance to mitoxantrone) or in human myeloma 8226/Dox1V cells (selected for resistance by simultaneous exposure to doxorubicin and verapamil). No mutations were detected in polymerase chain reaction products from RNA extracted from blasts of 15 patients with relapsed acute lymphocytic leukemia, previously treated with etoposide or teniposide. We conclude that: (a) single-strand conformational polymorphism analysis is useful for screening for mutations in topoisomerase II; (b) resistance to the cytotoxicity of inhibitors of DNA topoisomerase II is not always associated with mutations in ATP binding sequences or the active site tyrosine region of M(r) 170,000 topoisomerase II; and (c) mutations similar to those detected in drug resistant cells selected in culture have not been identified in blast cells from patients with relapsed acute lymphocytic leukemia, previously treated with etoposide or teniposide.  相似文献   

19.
SDZ PSC 833 (PSC 833) is a cyclosporin A analogue that is under clinical investigation in combination with doxorubicin (Dx) or other anticancer agents as a type-1 multidrug resistance (MDR-1)-reversing agent. The present study was focused on the effects of PSC 833 on the distribution and toxicity of Dx in non-tumor-bearing CDF1 male mice. Mice were given PSC 833 i.p. at 30 min before i.v. Dx treatment. Dx levels were determined by a high-performance liquid chromatography (HPLC) assay at different times during a 72-h period following Dx treatment in the serum, heart, intestine, liver, kidney, and adrenals of mice. In all tissues, Dx area under the concentration-time curve (AUC) values were much greater in mice receiving 10 mg/kg Dx in combination with 12.5 or 25 mg/kg PSC 833 than in mice receiving Dx alone. The highest increase in Dx concentrations was found in the intestine, liver, kidney, and adrenals. Lower, albeit significant, differences were found in the heart. PSC 833 did not appear to influence either urinary or fecal Dx elimination or Dx metabolism to a great extent. Doses of PSC 833 devoid of any toxicity potentiated the acute and delayed toxicity of Dx dramatically. The mechanism responsible for this enhanced toxicity has not yet been elucidated but is likely to be related to an increased tissue retention of Dx due to inhibition of the P-glycoprotein (Pgp) pump by PSC 833, as has recently been proposed for cyclosporin A.  相似文献   

20.
A resistant subline (AH130/5A) selected from rat hepatoma AH130 cells after exposure to adriamycin (ADM) showed remarkable resistance to multiple antitumor drugs, including mitomycin C (MMC) and porfiromycin (PFM). PFM, vinblastine (VLB), and ADM accumulated in AH130/5A far less than in the parent AH130 (AH130/P) cells. AH130/5A cells showed overexpression of P-glycoprotein (PGP), an increase in glutathione S-transferase activity, and a decrease in DT-diaphorase and glutathione peroxidase activity. The resistance to MMC and VLB of AH130/5A cells was partly reversed by H-87, an inhibitor of PGP. Buthionine sulfoximine, an inhibitor of glutathione synthase, did not affect the action of MMC. tert-Butylhydroquinone induced DT-diaphorase activity, increased PFM uptake, and enhanced the growth-inhibitory action of MMC in AH130/5A cells. Dicumarol, an inhibitor of DT-diaphorase, decreased PFM uptake and reduced the growth-inhibitory action of MMC in AH130/P cells. These results indicated that the adriamycin treatment of hepatoma cells caused multifactorial multidrug resistance involving a decrease in DT-diaphorase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号