首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Particle removal using non-contact brush scrubbing for post-CMP (Chemical Mechanical Planarization) cleaning is investigated analytically. The removal of SiO2 and Al2O3 particles adhered onto SiO2 film coated on the wafer surface are considered. The cleaning fluid (H2O/NH4OH = 1:25 and 1:200) flowing between the brush and wafer surface is treated as a thin-film fluid flow. The flow field details and its effect on the drag force acting on the adhered particles are discussed. In addition to the drag force, the electrical double layer (EDL) and thermophoretic force effects on particle removal are also considered. It was found that the dominant force in achieving particle removal using a rolling mechanism is the drag force. The EDL and thermophoretic forces have an insignificant effect on particle removal. Based on the results from this study, particles of submicron size can be removed from a wafer surface using higher brush rotation speed and pure deionized (DI) water as the cleaning fluid.  相似文献   

2.
In order to develop an effective dry surface cleaning method, removal of fine particles by pulse air jets was experimentally investigated. A dimensionless resuspension parameter, F*, which is the ratio of drag force on particles to van der Waals adhesion force, was introduced to correlate the removal efficiency. Resuspension experiments were carried out with monodisperse PSL particles and wax particles with diameter between 0.25 and 1.1 μm on silicon wafer and glass plate. As a result, it was found that deposition process of particles on the surface (gravitational settling and impaction at a relatively low impaction velocity) has little effect on the removal efficiency and that consecutive pulse air jet is effective in the removal of fine particles. Further, F* is the key parameter in determining the removal efficiency. The prediction method for the removal efficiency by pulse air jets with F* is proposed.  相似文献   

3.
《Journal of aerosol science》2002,33(8):1155-1180
This paper presents an analytical study of the thermophoretic motion of two free aerosol spheres with constant temperatures by using a method of reflections. The particles are allowed to differ in radius, in temperature, and in surface properties. The Knudsen numbers are assumed small so that a continuum model describes the fluid flow with a thermal creep and a hydrodynamic slip at the particle surfaces. The method of reflections is based on an analysis of the thermal and hydrodynamic disturbances produced by a single sphere with constant temperature placed in an arbitrarily varying temperature field. The results for two-sphere interactions are correct to O(r12−7), where r12 is the distance between the particle centers. For the special situation of two identical spheres, the effect of particle interactions will drive the pair system approaching each other if the particle temperature is less than the temperature of the surrounding. While the temperature of the particles is higher than the surrounding temperature, the thermophoretic force obtains a repulsive effect between the particles. Based on a microscopic model the results for two-particle interactions are applied to find the effect of particle concentration on the average thermophoretic velocity in a bounded suspension. In general, the effect of interactions on thermophoretic coagulation of particles with constant temperatures can be stronger than that on sedimentation.  相似文献   

4.
The removal of particulate contaminants adhering to a surface has been investigated using a dry ice blasting system. Monosized spherical latex particles of micron and submicron sizes were used as particulate contaminants, while the dry ice jet was produced by the thermal expansion of liquid carbon dioxide (CO2). Removal of the contaminants was observed in situ using a high-speed microscope camera and quantified through digital image analysis. The experimental results showed that dry ice blasting performs well for surface cleaning, which is attributed to the collision of the dry ice particles with the contaminants. For submicron-sized contaminants, a lower temperature jet was required in order to produce a larger number of dry ice particles to enhance the removal efficiency. The removal efficiency increased with an increase of the jet pressure on the surface. In addition, a theoretical analysis of the moments of forces caused by particle impact and aerodynamic drag showed that particle impact is primarily responsible for removal. Furthermore, the effect of the dry ice cleaning was visually observed by applying it to the removal of a film resin covering a surface.  相似文献   

5.
The Reynolds-averaged equations for turbulent particle population/transport in an Eulerian framework must be closed by specifying models for several terms: a turbophoretic force; a turbulent thermophoretic force; and a turbulent particle-diffusion term. In this article, new models are proposed for the turbophoretic term, as a particle-size dependent extrapolation of the corresponding turbulent fluid-velocity correlation, and for the turbulent thermophoretic term as an eddy-viscosity-scaled multiple of the corresponding mean thermophoretic term, appropriate for small low-inertia particles with τ+p < 10. When the turbophoresis model is incorporated in a system of equations that describes particle motion within the surrounding fluid, it predicts particle deposition velocities that are in good agreement with experimental data over a range of particle sizes. When this equation system is included in a computational model to predict particle transport in turbulent pipe flows, the efficiency of particle deposition in pipes with upstream heating and downstream cooling is found to be in fair agreement with experimental measurements at two different Reynolds numbers, and over a range of particle sizes and temperature differences.

Copyright 2015 American Association for Aerosol Research  相似文献   

6.
Saffman lift forces on dense particles due to gradients in both streamwise and cross-stream velocities in a downward, fully developed turbulent square duct flow at Reτ = 360 are studied using large eddy simulations. Volume fraction of the dispersed phase is low enough (≤ 10− 5) that the one-way coupling approach is reasonable, i.e., two-way coupling and particle-particle collisions are not considered. Eulerian and Lagrangian approaches are used to treat the continuous and dispersed phases, respectively. Subgrid stresses are modeled with the dynamic subgrid kinetic energy model of Kim and Menon [W.W. Kim and S. Menon. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows, AIAA 97-0210, 1997.]. The particle equation of motion includes drag, lift forces due to both the streamwise and cross-stream velocity gradients, gravity, and is integrated using the fourth-order accurate Runge-Kutta scheme. Dependence of particle drag and lift forces on duct cross-sectional location and particle response time is demonstrated using the mean value contours and probability density functions (PDFs) of particle forces. It is shown that the streamwise component of the mean drag force experienced by particles of all response times is a deceleration force, i.e. on average, fluid streamwise velocity lags the particle streamwise velocity. Secondly, the two wall-normal (or lateral) components of the mean drag force are oriented such that the particles experience a net mean force toward the duct corners. PDFs of particle drag force components show that smaller response time particles experience a wider range of drag force about the mean value, as compared to the more inertial particles. Contours of mean wall-normal lift forces due to streamwise velocity gradients show that this force predominantly acts toward the duct walls and that the maximum lift force occurs close to the walls. PDFs of lift force due to streamwise velocity gradients show that the range of fluctuations increases with particle response time, but the dependence on particle response time is weaker compared to drag force. Lift forces due to cross-stream velocity gradients are at least an order of magnitude smaller than lift forces due to streamwise velocity gradients and are found to decrease in their range of fluctuations with particle response time. It is demonstrated that lift forces due to secondary flow velocity gradients are not as important as those due to streamwise velocity gradients in a square duct flow.  相似文献   

7.
Daneshmand  Saeed  Masoudi  Behnam 《SILICON》2018,10(3):1003-1011

This paper aims to study the influence of Al2O3 particle addition to Al alloys. The effects of reinforcement volumes in a metal matrix alloy on response variables were investigated towards the highlighting of this process with the goal of achieving high process performance. In this study, the comparison between EDM of Al/Al2 O 3 metal matrix composites with different volumes of reinforcement and 2024 alloys was investigated to determine the influence of weight percentage of Al2 O 3-reinforced particles on output parameters. The results show that addition of Al2 O 3 particles in the composites has significant effects on material removal rate, surface roughness and tool wear rate. Tool wear rate and surface roughness were increased with increased Al2 O 3 ceramic contents. Surface roughness was obviously affected by the discharge current as well as pulse on-time. Rapid increase in tool wear rate was seen when reinforced with higher weight percentage of Al2O3 particles. The pulse on-time and discharge current significantly affect the material removal rate, tool wear rate and surface roughness. Tool wear rate, material removal rate and surface roughness were high if the discharge current and pulse on-time were set at a higher level. In other words, high current and pulse on-time resulted in high tool wear rate, material removal rate and surface roughness. The material removal rate was decreased by increasing the weight percentage of Al2O3 particles.

  相似文献   

8.
We have investigated cleaning solutions based on citric acid (CA) to remove metallic contaminants from the silicon wafer surface. Silicon wafers were intentionally contaminated with Fe, Ca, Zn, Na, Al and Cu standard solution by spin coating method and cleaned in various CA-added cleaning solutions. The concentration of metallic contaminants on the silicon wafer surface before and after cleaning was analyzed by vapor phase decomposition/inductively coupled plasma-mass spectrometry (VPD/ICP-MS). And the surface micro-roughness was also measured by atomic force microscopy (AFM) to evaluate the effect of cleaning solutions. It was found that acidic CA/H2O solution has the ability to remove metallic contaminants from silicon surfaces. Fe, Ca, Zn and Na on silicon surface were decreased from the order of 1012 atoms/cm2 to the order of 109 atoms/cm2 even at low CA concentration, low temperature of CA solution and with short immersion time. CA was also effective in alkali cleaning solution. Fe, Ca, Zn, Na and Cu were reduced down to the order of 109 atoms/cm2 in CA added with NH4OH/H2O2/H2O solution without degradation of surface micro-roughness.  相似文献   

9.
The methodology of coupling large eddy simulation (LES) with the discrete element method was applied for computational studies of pneumatic transport of granular materials through vertical and horizontal pipes in the presence of electrostatic effects. The LES numerical results obtained agreed well with the law of the wall for various y+‐ranges. The simulations showed that a thin layer of particles formed and remained adhered to the pipe walls during the pneumatic conveying process due to the effects of strong electrostatic forces of attraction toward the pipe walls. Particle concentrations were generally higher near the pipe walls than at the pipe center resulting in the ring flow pattern observed in previous experimental studies. The close correspondence between particle velocity vectors and fluid drag force vectors was indicative of the importance of fluid drag forces in influencing particle behaviors. In contrast, the much weaker particle–particle electrostatic repulsion forces had negligible effects on particle behaviors within the system under all operating conditions considered. The electrostatic field strength developed during pneumatic conveying increased with decreasing flow rate due to increased amount of particle‐wall collisions. Based on dynamic analyses of forces acting on individual particles, it may be concluded that electrostatic effects played a dominant role in influencing particle behaviors during pneumatic conveying at low flow rates, whereas drag forces became more important at high flow rates. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

10.
Direct wafer bonding requires the surfaces to have low surface roughness (Ra < 0.5 nm) as well as to be free of any particles or contaminants. Meeting these requirements for wafers patterned with lithography and dry etching presents a serious problem in terms of removal of photoresist residue and etch-related particles, which would require expensive additional equipment to be removed. In this study, we propose the use of chemical mechanical polishing (CMP) to be performed after all lithography and dry etch process steps involving several masks are completed. To reduce the adverse effect of any remaining slurry that might reside in the etched structures, we also propose to reduce the maximum annealing temperature from 550 °C down to 300 °C. The effect of lower annealing temperature on bonding is compensated using a sequential plasma activation with 60 s of O2 followed by 90 s of N2 on contacting surfaces made of silicon dioxide to achieve successful wafer bonding. Initial plasma activation with O2 additionally serves as a final cleaning step whereas the following activation with N2 for an extended duration is to fully activate the surface for direct bonding. This proposed technique can motivate the use of direct wafer bonding for microfabrication of advanced MEMS devices.  相似文献   

11.
Particle deposition in a fully developed turbulent duct flow was studied. The random walk model of Lagrangian approach was used to predict the trajectories of 3000 particles with a density of 900 kg/m3. The effects of thermophoretic force and air humidity were also considered. The results were compared with the previous studies with a particle size range of 0.01–50 μm and air flow velocity of 5 m/s. The profile of dimensionless deposition velocity with relaxation time presents a V-shaped curve and the results are in good agreement with the previous studies.The effects of air temperature and humidity on particle deposition with a particle size of 1 μm were also investigated. The results show that thermophoretic force accelerates particle deposition onto the duct walls with increasing temperature difference between air flow and the duct wall surface. Meanwhile, it was found that particle deposition velocity increases with air humidity.  相似文献   

12.
《Ceramics International》2021,47(22):31681-31690
A functional Fe3O4/SiO2 core–shell abrasive was synthesized via hydrolysis of tetraethyl orthosilicate. A silica shell was successfully coated on a Fe3O4 core, resulting in a core-shell particle with an average diameter of 140 nm. The prepared core–shell abrasives was utilized for ultrasound-assisted magneto-rheological polishing (UAMP) of sapphire substrate. The experimental results showed that the Fe3O4/SiO2 core–shell abrasives exhibited a remarkable polishing performance for the sapphire material, resulting in smooth and detect-free surfaces with a high material removal rate (MRR) compared to mixed abrasives (Fe3O4 and SiO2) and pure Fe3O4 particles. The application of ultrasonic vibration to the sapphire wafer further improved the MRR, which was approximately 3.4 times higher than that of traditional magneto-rheological polishing. The largest MRR (1.974 μm/h) and comparatively low surface roughness (0.442 nm) of the polished sapphire wafer were achieved by UAMP with the Fe3O4/SiO2 core–shell abrasives. The polishing mechanism of the sapphire wafer is discussed in terms of chemical reactions and mechanical polishing.  相似文献   

13.
Five kinds of polytetrafluoroethylene (PTFE)-based composites were prepared: PTFE, PTFE + 30 vol % SiC, PTFE + 30 vol % Si3N4, PTFE + 30 vol % BN, and PTFE + 30 vol % B2O3. The friction and wear properties of these ceramic particle filled PTFE composites sliding against GCr15 bearing steel under both dry and liquid paraffin lubricated conditions were studied by using an MHK-500 ring-block wear tester. The worn surfaces and the transfer films formed on the surface of the GCr15 bearing steel of these PTFE composites were investigated by using a scanning electron microscope (SEM)and an optical microscope, respectively. The experimental results show that the ceramic particles of SiC, Si3N4, BN, and B2O3 can greatly reduce the wear of the PTFE composites; the wear-reducing action of Si3N4 is the most effective, that of SiC is the next most effective, then the BN, and that of B2O3 is the worst. We found that B2O3 reduces the friction coefficient of the PTFE composite but SiC, Si3N4, and BN increase the friction coefficients of the PTFE composites. However, the friction and wear properties of the ceramic particle filled PTFE composites can be greatly improved by lubrication with liquid paraffin, and the friction coefficients of the PTFE composites can be decreased by 1 order of magnitude. Under lubrication of liquid paraffin the friction coefficients of these ceramic particle filled PTFE composites decrease with an increase of load, but the wear of the PTFE composites increases with a load increase. The variations of the friction coefficients with load for these ceramic particle filled PTFE composites under lubrication of liquid paraffin can be properly described by the relationship between the friction coefficient (μ) and the simplified Sommerfeld variable N/P as given here. The investigations of the frictional surfaces show that the ceramic particles SiC, Si3N4, BN, and B2O3 enhance the adhesion of the transfer films of the PTFE composites to the surface of GCr15 bearing steel, so they greatly reduce the wear of the PTFE composites. However, the transfer of the PTFE composites onto the surface of the GCr15 bearing steel can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. Meanwhile, the interactions between the liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, create some cracks on the worn surfaces of the ceramic particle filled PTFE composites; the creation and development of these cracks reduces the load-supporting capacity of the PTFE composites. This leads to the deterioration of the friction and wear properties of the PTFE composites under higher loads in liquid paraffin lubrication. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2611–2619, 1999  相似文献   

14.
In this article, we extend the low Reynolds number fluid‐particle drag relation proposed by Yin and Sundaresan for polydisperse systems to include the effect of moderate fluid inertia. The proposed model captures the fluid‐particle drag results obtained from lattice‐Boltzmann simulations of bidisperse and ternary suspensions at particle mixture Reynolds numbers ranging from 0 ≤ Remix ≤ 40, over a particle volume fraction range of 0.2 ≤ ? ≤ 0.4, volume fraction ratios of 1 ≤ ?i/?j ≤ 3, and particle diameter ratios of 1 ≤ di/dj ≤ 2.5. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

15.
From the significance of three-dimensional simulation of dispersed flow systems in many engineering fields, extensive study was conducted for lift force in a single particle system as well as a multiparticle system. In this study, the lift force in a single particle system was modeled by considering the effect of bubble deformation on the lift force. The model was finalized based on existing data obtained in the range of particle Reynolds number from 3.68 to 78.8, viscous number from 0.0435 to 0.203 and Eötvös number from 1.40 to 5.83. The viscous number is defined by where μf, ρf, σ, g and Δρ are, respectively, fluid viscosity, fluid density, surface tension, gravitational acceleration and density difference between phases. The applicability of the model to higher particle Reynolds number system such as an air-water system was qualitatively examined. The lift force model developed in a single particle system was extended to a multiparticle system. The applicability of the extended lift force model was qualitatively examined. The similarity between drag and lift forces were also discussed.  相似文献   

16.
The nanomechanical deformations on a broad range of optical material surfaces (single crystals of Al2O3 [sapphire], SiC, Y3Al5O12 [YAG], CaF2, and LiB3O5 [LBO]; a SiO2–Al2O3–P2O5–Li2O glass-ceramics [Zerodur]; and glasses of SiO2:TiO2 [ULE], SiO2 [fused silica], and P2O5–Al2O3–K2O–BaO [Phosphate]) near the elastic-plastic load boundary have been measured by nanoindentation and nanoscratching to mimic the nanoplastic removal caused by a single slurry particle during polishing. Nanoindenation in air was performed to determine the workpiece hardness at various loads using a commercial nanoindenter with a Berkovich tip. Similarly, an atomic force microscope (AFM) with a stiff diamond coated tip (150 nm radius) was used to produce nanoplastic scratches in air and aqueous environments over a range of applied loads (~20-170 μN). The resulting nanoplastic deformation of the nanoscratches were used to calculate the removal function (i.e., depth per pass) which ranged from 0.18 to 3.6 nm per pass for these materials. A linear correlation between the nanoplastic removal function and the polishing rate (using a fixed polishing process with colloidal silica slurry on a polyurethane pad) of these materials was observed implying that: (a) the polishing mechanism using colloidal silica slurry can be dominated by mechanical rather than chemical interactions; and (b) the nanoplastic removal function, as opposed to interface particle interactions, is the controlling factor for the polishing material removal rate. Furthermore, this correlation is consistent with the Ensemble Hertzian Multi-Gap (EHMG) microscopic material removal rate model described previously. The nanoplastic removal depth was also found to correlate to the measured nanoindentation hardness (H1) of the optical material, scaling as H1−3.5. Two-dimensional (2D) finite element analysis simulations of nanoindentation showed a similar nonlinear dependence of plastic deformation with the workpiece material hardness. The findings of this study are used to determine an effective Preston coefficient for the material removal rate expression and enhance the predictive nature of the nanoplastic polishing rate for various materials utilizing their material properties.  相似文献   

17.
The nature of the particle–solid interactions and particle–fluid interactions in rectangular duct bend geometry with/without a moving wall is studied, taking into account particle collision, colloidal, and hydrodynamic forces, and four way coupling between the fluid flow and particles. The focus is on systems where particles and fluid phase have similar length scales, fluid Reynolds number (Ref)  1, and particle's Stokes number (St)  1. Particles move toward the walls of the channel near the bend, and have long residence times in these regions. Buoyancy force has negligible effect on particle motion, where adhesion and drag forces lead to particle motion and agglomeration patterns. The effect of a free surface on agglomeration sites in the turning flow is elucidated.  相似文献   

18.

The distributions of particles inside the silane plasma chemical vapor deposition (PCVD) reactor were theoretically investigated by analyzing the transport phenomena of particles for various plasma conditions. We included the effects of fluid convection, particle diffusion, and external forces (ion drag, electro static, and gravitational forces) onto the particles to analyze the movements of particles inside the plasma reactor. Initially, we assumed that the particles are uniformly distributed inside the plasma reactor and showed how these particles move and how they are distributed for various plasma conditions. The dominant force for the particle movement is the electrostatic force in the sheath region and the ion drag force in the bulk plasma region. Both the electrostatic and ion drag forces are towards the sheath boundaries and most of the particles are concentrated in the regions near the sheath boundaries by the balance of both forces, but the particle concentrations in the sheath region and in the bulk plasma region are almost 0. The particle concentrations at the down stream sheath boundary become higher than at the upstream sheath boundary by the effect of fluid convection. As the electric field strength increases, the particles are pushed more strongly towards the bulk plasma region and the peaks of particle concentrations are shifted more away from the electrodes. As the particle diameter increases from 0.1 mu m to 10 mu m, the relative importance of fluid convection on the particle movement becomes more significant than those of particle diffusion, ion drag force, and electrostatic force and the particle concentrations at the down stream sheath boundary increase, while those at the upstream sheath boundary decrease. It is found that the movements of negative ions as well as the positive ions are also important for determining the ion drag force onto the particles in silane PCVD.  相似文献   

19.
在进料浓度较低时,固相颗粒之间距离较大,相互之间的作用以及影响极微,颗粒的分离可以通过对其施加一个外力,将其往器壁方向推,这样就完成了固-液-液三相的分离。这个外即惯性离心力的大小很容易得到,但颗粒所受流体介质阻力则很难得到。文章文通过研究对对旋流器内部固相颗粒进行了受力分析并从理论上对细颗粒易受参数影响的原因进行了阐述。  相似文献   

20.
We investigate the average drag, lift, and torque on static assemblies of capsule-like particles of aspect ratio 4. The performed simulations are from Stokes flow to high Reynolds numbers (0.1 ≤ Re ≤ 1,000) at different solids volume fraction (0.1 ≤ ɛs ≤ 0.5). Individual particle forces as a function of the incident angle ϕ with respect to the average flow are scattered. However, the average particle force as a function of ϕ is found to be independent of mutual particle orientations for all but the highest volume fractions. On average, a sine-squared scaling of drag and sine-cosine scaling of lift holds for static multiparticle systems of elongated particles. For a packed bed, our findings can be utilized to compute the pressure drop with knowledge of the particle-orientation distribution, and the average particle drag at ϕ = 0° and 90°. We propose closures for average forces to be used in Euler–Lagrange simulations of particles of aspect ratio 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号