首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface chemistry of IM7 carbon fibers was characterized by x-ray photoelectron spectroscopy (XPS). The fiber surface energetics were determined from a two-liquid tensiometric method. The adhesion between as-received and plasma-treated carbon fibers and polyethersulfone (PES) was measured by the microbond pull-out test.

The surface characterization techniques showed that the effect of any plasma treatment is attained within less than 15 seconds. It was found that both argon and air plasmas increased the oxidation state of the fiber surface and that they reduced the dispersive component (γsd) of the fiber surface free energy considerably. The ammonia plasma treatment resulted in a cleaning of the surface. This plasma treatment was also effective in improving the fiber/matrix adhesion of quenched samples. A similar adhesion enhancement between as-received fibers and PES is obtained by annealing the samples above the Tg of the polymer. The air plasma treatment did not have any significant effect on the fiber/matrix adhesion.  相似文献   

2.
IM7 carbon fibers were surface treated in methane, ethylene, trifluoromethane and tetrafluoromethane plasmas. The surface chemical composition of the fibers was determined by X-ray photoelectron spectroscopy (XPS). The adhesion between as-received and plasma-treated carbon fibers and polyethersulfone (PES) and an epoxy resin was measured by the microbond pull-out test. XPS showed that the methane and ethylene plasmas deposited a thin layer of hydrocarbon on the fiber surface. The trifluoromethane plasma deposited a layer of fluorocarbon on the surface of the fibers. The tetrafluoromethane plasma etched the fibers and introduced a significant amount of fluorine on the surface. The microbond pull-out test results indicated that an etching plasma, such as the tetrafluoromethane plasma, improved the adhesion between carbon fibers and PES. These results are consistent with earlier work performed with ammonia plasma. The adhesion is believed to be due primarily to the differential thermal shrinkage between the fiber and the matrix. It was shown that in the case of a reactive matrix such as an epoxy resin, the fiber chemical composition plays a role in the fiber-matrix adhesion. However, this chemical effect is secondary to the cleaning effect of the surface treatment.  相似文献   

3.
The adhesion between carbon fibers and bismaleimide resins was evaluated using the microbond single fiber pull-out test. A commercially-available, methylene dianiline-based bismaleimide resin and a novel phosphorus-containing bismaleimide were tested with as-received and plasma-treated polyacrylonitrile-based carbon fibers. The surface chemical composition, topography, tensile strength, and surface free energy of the carbon fibers were studied using x-ray photoelectron spectroscopy, scanning electron microscopy, single fiber tensile tests, and dynamic contact angle analysis. The carbon fiber-bismaleimide adhesion improved when the carbon fiber received an oxidative commercial surface treatment or was exposed to an air or ammonia plasma prior to bonding.  相似文献   

4.
The adhesion between carbon fibers and bismaleimide resins was evaluated using the microbond single fiber pull-out test. A commercially-available, methylene dianiline-based bismaleimide resin and a novel phosphorus-containing bismaleimide were tested with as-received and plasma-treated polyacrylonitrile-based carbon fibers. The surface chemical composition, topography, tensile strength, and surface free energy of the carbon fibers were studied using x-ray photoelectron spectroscopy, scanning electron microscopy, single fiber tensile tests, and dynamic contact angle analysis. The carbon fiber-bismaleimide adhesion improved when the carbon fiber received an oxidative commercial surface treatment or was exposed to an air or ammonia plasma prior to bonding.  相似文献   

5.
Poly(arylene ether phosphine oxide)s (PEPO) were prepared and utilized to coat carbon fibers to enhance the interfacial adhesion with vinyl ester resins. For comparison, poly(arylene ether sulfone) (PES), Udel® P-1700, and Ultem® 1000 were also used. The interfacial shear strength (IFSS) of thermoplastic polymer-coated fibers was measured via microbond pull-out tests. The interfacial adhesion between thermoplastics and as-received carbon fibers was also measured in order to investigate the adhesion mechanism. Thermoplastic polymer-coated fibers exhibited a higher IFSS than the as-received fibers with vinyl ester resin, and with thermoplastic polymers. PEPO-coated fibers showed the highest IFSS, followed by Udel®, PES, and Ultem®-coated fibers. The high IFSS obtained with PEPO coating could be attributed to the phosphine oxide moiety, which provided a strong interaction with functional groups in the vinyl ester resin and also on carbon fibers. A diffusion study revealed the formation of a clear interphase not only between PEPO and the vinyl ester resin, but also between Udel® (PES or Ultem®) and the vinyl ester resin, although the morphology of the two interphases differed greatly.  相似文献   

6.
Interfacial bond strength is often a performance-limiting factor of carbon-fiber-reinforced composites. This limitation is most prevalent when higher-modulus fibers or relatively unreactive matrix resins, such as engineering thermoplastics or high-temperature thermoset resin systems, are used. Radio-frequency (RF) glow discharge plasmas are an effective means of modifying carbon-fiber surface chemical characteristics to promote adhesion. It has been previously shown that oxidizing plasmas are especially effective compared with electro-oxidative treatments for treating carbon fiber surfaces as revealed by titrations, electron spectroscopy, wetting, and inverse gas chromatography measurements. This study evaluated the effectiveness of CO2 plasmas on two experimental high-modulus carbon/graphite fibers and correlated the plasma surface modification with interfacial adhesion in an epoxy matrix composite system. The results show that CO2 plasma treatment increased the surface oxygen content by nearly a factor of 2 over typical electro-oxidation treatments. The increased oxygen is mainly in the form of hydroxyl, ketone, and carboxyl-like moieties. Unidirectional composites were prepared from as-received and plasma-modified versions of each type of experimental fiber. The composites containing plasma-modified filaments exhibited 1.5-3.0 times the strength of composites fabricated with untreated or electro-oxidized filaments in transverse-flexural tests. Short-beam shear strength increased by two times over those with as-produced filaments and is equivalent to that of composites containing electro-oxidized filaments.  相似文献   

7.
Several surface treatments, using both commercially available coupling agents and reagents containing multiple amines, were applied to commingled continuous as-received AS4 carbon reinforcing fiber/liquid crystal polymer (LCP) matrix fibers. Unidirectional composites (normally 60 vol% carbon fiber) were prepared from as-received and treated commingled fibers and characterized. To estimate the effect the effect of the treatments on fiber-matrix adhesion, short beam shear (SBS) tests were conducted, the failure surfaces were examined, and spectroscopic studies wee performed. The mean SBS strength of the as-received unidirectional AS4 carbon fiber/LCP matrix composite system was 49 MPa. The best coupling agent and amine treatments yielded increases in composite shear strength of ∼ 10 to 20%, relative to the as-received AS4/LCP system. For the amine treatments, ESCA and FTIR analyses suggested of both the carbon and LCP fibers may have caused the increased adhesion. Moreover, SEM analysis of the failure surfaces of SBS specimens from composites prepared with the treated fibers may have caused the increased adhesion. Moreover, SEM analysis of the failure surfaces of SBS specimens from composites prepared with the treated fibers (both with coupling agents and amines) showed that strong fiber-matrix adhesion was present. That is, failure occurred in the LCP matrix material.  相似文献   

8.
Interfacial adhesion between carbon fiber and epoxy resin plays an important role in determining performance of carbon–epoxy composites. The objective of this research is to determine the effect of fiber surface treatment (oxidization in air) on the mechanical properties (flexural strength and modulus, shear and impact strengths) of three‐dimensionally (3D) braided carbon‐fiber‐reinforced epoxy (C3D/EP) composites. Carbon fibers were air‐treated under various conditions to improve fiber–matrix adhesion. It is found that excessive oxidation will cause formation of micropits. These micropits are preferably formed in crevices of fiber surfaces. The micropits formed on fiber surfaces produce strengthened fiber–matrix bond, but cause great loss of fiber strength and is probably harmful to the overall performance of the corresponding composites. A trade‐off between the fiber–matrix bond and fiber strength loss should be considered. The effectiveness of fiber surface treatment on performance improvement of the C3D/EP composites was compared with that of the unidirectional carbon fiber–epoxy composites. In addition, the effects of fiber volume fraction (Vf) and braiding angle on relative performance improvements were determined. Results reveal obvious effects of Vf and braiding angle. A mechanism was proposed to explain the experimental phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1040–1046, 2002  相似文献   

9.
Interfacial adhesion between fiber and matrix has a strong influence on composite mechanical performance. To exploit the reinforcement potential of the fibers in advance composite, it is necessary to reach a deeper understanding on the relation between fiber surface treatment and interfacial adhesion. In this study, air plasma was applied to modify carbon fiber (CF) surface, and the capability of plasma grafting for improving the interfacial adhesion in CF/thermoplastic composite was discussed and also the mechanism for composite interfacial adhesion was analyzed. Results indicated that air plasma treatment was capable of increasing surface roughness as well as introducing surface polar groups onto CF; both chemical bonding and mechanical interaction were efficient in enhancements of interlaminate shear strength of CF/PPESK composite, while mechanical interaction has a dominant effect on composite interfacial adhesion than chemical bonding interaction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
The effect of surface treatment [rare earth solution (RES) and air oxidation] of carbon fibers (CFs) on the mechanical and tribological properties of carbon fiber‐reinforced polyimide (CF/PI) composites was comparatively investigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fiber and PI matrix. Thus, the flexural strength and wear resistance were significantly improved. The RES surface treatment is superior to air oxidation treatment in promoting interfacial adhesion between carbon fiber and PI matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

11.
Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance their adhesion to vinyl ester resin. Gases utilized for plasma etching were Ar, N2 and O2, while monomers used in plasma polymerization coating were acetylene, butadiene and acrylonitrile. Plasma etchings were carried out as a function of plasma power (30–70 W), treatment time (1–10 min) and gas pressure (20–40 mtorr). Plasma polymerizations were performed by varying the treatment time (15–60 s), plasma power (10–30 W) and gas pressure (20-40 mtorr). The conditions for plasma etching and plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Plasma etched and plasma polymer coated carbon fibers were characterized by SEM, XPS, FT-IR and α-Step, dynamic contact angle analyzer (DCA) and tensile strength measurements. In Part 1, interfacial adhesion of plasma etched and plasma polymer coated carbon fibers to vinyl ester resin is reported, while characterization results including tensile strength of carbon fibers are reported in Part 2. Among the treatment conditions, a combination of Ar plasma etching and acetylene plasma polymer coating provided greatly improved interfacial shear strength (IFSS) of 69 MPa, compared to 43 MPa obtained from as-received carbon fiber. Based on the SEM analysis of failure surfaces and load-displacement curves, the failure was found to occur at the interface between plasma polymer coating and vinyl ester resin.  相似文献   

12.
The performance of carbon fibers-reinforced composites is dependent to a great extent on the properties of fiber–matrix interface. To improve the interfacial properties in carbon fibers/epoxy composites, nano-SiO2 particles were introduced to the surface of carbon fibers by sizing treatment. Atomic force microscope (AFM) results showed that nano-SiO2 particles had been introduced on the surface of carbon fibers and increase the surface roughness of carbon fibers. X-ray photoelectron spectroscopy (XPS) showed that nano-SiO2 particles increased the content of oxygen-containing groups on carbon fibers surface. Single fiber pull-out test (IFSS) and short-beam bending test (ILSS) results showed that the IFSS and ILSS of carbon fibers/epoxy composites could obtain 30.8 and 10.6% improvement compared with the composites without nano-SiO2, respectively, when the nano-SiO2 content was 1 wt % in sizing agents. Impact test of carbon fibers/epoxy composites treated by nano-SiO2 containing sizing showed higher absorption energy than that of carbon fibers/epoxy composites treated by sizing agent without nano-SiO2. Scanning electron microscopy (SEM) of impact fracture surface showed that the interfacial adhesion between fibers and matrix was improved after nano-SiO2-modified sizing treatment. Dynamic mechanical thermal analysis (DMTA) showed that the introduction of nano-SiO2 to carbon fibers surface effectively improved the storage modulus of carbon fibers/epoxy.  相似文献   

13.
Sol–gel approach was developed to apply zirconia coatings on basalt fibers. Dense or porous ZrO2 coatings were obtained, depending on the process parameters. The alkali resistance of uncoated and ZrO2-coated basalt fibers in alkali solution was studied. The morphology, elemental and phase composition of etched fibers as a function of etching time were studied by means of a set of analytical methods. A scheme of etching of as-received and coated basalt fiber was proposed. Zirconia coating slows down the corrosion of basalt fiber in alkali solution. The denser zirconia coating slows down the corrosion to a higher extent than the porous coating. The uncoated and coated basalt fibers were tested in mini composites with cement matrix. It was shown that the surface of the coated fiber is affected by the alkaline medium of the cement matrix to a smaller extent than the surface of as-received basalt fiber.  相似文献   

14.
《Ceramics International》2017,43(12):8922-8931
The tensile strength and microwave absorbing properties of the amorphous silicon carbide fiber (Tyranno-ZMI) annealed at different temperatures were studied. The tensile strength of the as-received ZMI fiber tows was 1.1 GPa; and the average real and imaginary parts of permittivities of the as-received ZMI/resin samples were 11.3 and 10.5 respectively. The major dielectric loss mechanism of the fibers was conduction loss, which was due to high electrical conductivity of the enriched carbon in ZMI fibers. The 2.0 mm thick ZMI/resin composites could absorb 80% microwave energy in X band, indicating good microwave absorbing property. After heat treatment, fibers degraded gradually and permittivities increased, which were mainly attributed to the decomposition of amorphous SiCxOy and the growth of the SiC nanocrystals and free carbon nanodomains.  相似文献   

15.
Co60 γ‐ray radiation as a simple and convenient method for surface modification of Armos aramid fibers was introduced in this article. Two kinds of gas mediums, N2 and air, were chosen to modify aramid fiber surface by γ‐ray irradiation. After fiber surface treatment, the interlaminar shear strength values of aramid/epoxy composites were enhanced by about 17.7 and 15.8%, respectively. Surface elements of aramid fibers were determined by XPS, the analysis of which showed that the ratio of oxygen/carbon was increased. The crystalline state of aramid fibers was determined by X‐ray diffraction instrument. The surface topography of fibers was analyzed by atomic force microscopy and scanning electron microscope. The degree of surface roughness and the wettability of fiber surface were both enhanced by γ‐ray radiation. The results indicated that γ‐ray irradiation technique, which is a suitable way of batch process for industrialization, can significantly improve the surface properties of aramid fibers reinforced epoxy resin matrix composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Abstract

The performance of fiber-reinforced polymer matrix composites is strongly determined by the interfacial adhesion between fiber and matrix. As polymer matrix and inorganic glass fibers are chemically different, glass fiber sizing has to be employed to enhance fiber matrix adhesion. A new approach to optimize fiber matrix adhesion is an atmospheric pressure plasma treatment of the glass fiber reinforcement resulting in modifying and activating the glass fiber size. It is well known that adhesion can be improved by plasma treatment. To identify how the plasma acts and how the size is modified by the plasma, a commercial silane size was treated with a dielectric barrier discharge in air and analyzed by X-ray photoelectron, IR, NMR and Rutherford backscattering spectroscopy. The appearance of new OH, ester, carboxyl groups was observed. The modification consisted mainly of polyether chain scissions as a consequence of the formation of hydroperoxides.  相似文献   

17.
In this work the effect of atmospheric plasma treatment on carbon fiber has been studied. The carbon fibers were treated for 1, 3 and 5 min with a He/O2 dielectric barrier discharge atmospheric pressure plasma. The fiber surface morphology, surface chemical composition and interfacial shear strength between the carbon fiber and epoxy resin were investigated using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and the single fiber composite fragmentation test. Compared to untreated carbon fibers, the plasma treated fiber surfaces exhibited surface morphological and surface composition changes. The fiber surfaces were found to be roughened, the oxygen content on the fiber surfaces increased, and the interfacial shear strength (IFSS) improved after the atmospheric pressure plasma treatment. The fiber strength showed no significant changes after the plasma treatment.  相似文献   

18.
High-modulus carbon-fiber-reinforced thermoplastic composites typically fail at the interface due to poor adhesion between fiber and matrix. To increase interfacial strength, the research described herein focuses on modifying the fiber surface (via high-temperature acid treatment or zinc electrolysis) to facilitate chemical functional groups on the fiber that might increase fiber-matrix inter-actions. The thermoplastic matrix materials used in this study were random copolymers of ethylene and methacrylic acid in which the carboxyl groups in the methacrylic acid segments were neutralized with either sodium or zinc counterions. Mechanical tests were performed to determine the macroscopic effects of fiber pretreatment on the ultimate mechanical properties of the composites. Fabrication was designed such that fiber-matrix separation provides the dominant contribution to mechanical gracture. Composites containing fibers treated with nitric acid, or a mixture of nitric and sulfuric acids exhibit a 20 to 25 percent increase in transverse (tensile) fracture stress relative to composites fabricated with as-received fibers. Scanning electron microscopy of the fiber-matrix interface at fracture allows one to “zoom-in” and obtain qualitative details related to adhesion. Fracture surface micrographs of the above-mentioned acid-treated fiber-reinforced composites reveal an increase in the amount of matrix material that adhered to the fiber surface relative to the appearance of the fracture surface of composites fabricated with as-received fibers. The presence of acid functionality in the matrix, rather than the divalent nature of the zinc counterions, produces the largest relative enhancement of transverse (tensile) fracture stress in the above-mentioned composites containing surface-treated carbon fibers.  相似文献   

19.
A nanoparticle dispersion is known to enhance the mechanical properties of a variety of polymers and resins. In this work, the effects of silica (SiO2) nanoparticle loading (0–2 wt%) and ammonia/ethylene plasma-treated fibers on the interfacial and mechanical properties of carbon fiber–epoxy composites were characterized. Single fiber composite (SFC) tests were performed to determine the fiber/resin interfacial shear strength (IFSS). Tensile tests on pure epoxy resin specimens were also performed to quantify mechanical property changes with silica content. The results indicated that up to 2% SiO2 nanoparticle loading had only a little effect on the mechanical properties. For untreated fibers, the IFSS was comparable for all epoxy resins. With ethylene/ammonia plasma treated fibers, specimens exhibited a substantial increase in IFSS by 2 to 3 times, independent of SiO2 loading. The highest IFSS value obtained was 146 MPa for plasma-treated fibers. Interaction between the fiber sizing and plasma treatment may be a critical factor in this IFSS increase. The results suggest that the fiber/epoxy interface is not affected by the incorporation of up to 2% SiO2 nanoparticles. Furthermore, the fiber surface modification through plasma treatment is an effective method to improve and control adhesion between fiber and resin.  相似文献   

20.
Unsized AS-4 carbon fibers were subjected to RF plasma etching and/or plasma polymerization coating in order to enhance their adhesion to vinyl ester resin. Ar, N2 and O2 were utilized for plasma etching, and acetylene, butadiene and acrylonitrile were used for plasma polymerization coating. Etching and coating conditions were optimized in terms of plasma power, treatment time, and gas (or monomer) pressure by measuring the interfacial adhesion strength. Interfacial adhesion was evaluated using micro-droplet specimens prepared with vinyl ester resin and plasma etched and/or plasma polymer coated carbon fibers. Surface modified fibers were characterized by SEM, XPS, FT-IR, α-Step, dynamic contact angle analyzer (DCA) and tensile strength measurements. Interfacial adhesion between plasma etched and/or plasma polymer coated carbon fibers and vinyl ester resin was reported previously (Part 1), and characterization results are discussed is this paper (Part 2). Gas plasma etching resulted in preferential etching of the fiber surface along the draw direction and decreased the tensile strength, while plasma polymer coatings altered neither the surface topography of fibers nor the tensile strength. Water contact angle decreased with plasma etching, as well as with acrylonitrile and acetylene plasma polymer coatings, but did not change with butadiene plasma polymer coating. FT-IR and XPS analyses revealed the presence of functional groups in plasma polymer coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号