首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effect of bondline thickness on the critical strain energy release rate (CSERR) was investigated using aluminum adherends and an epoxy adhesive. Complete mixed Mode I/II fracture envelopes for adhesive thicknesses ranging from 0.203 to 1.52 mm were developed using double cantilever beam (DCB), mixed-mode bending (MMB), and end notch flexure (ENF) tests methods. Bondline thickness strongly affects the CSERR for different amounts of Mode II component. Pure Mode II had the largest CSERR and showed monotonic increase with bondline thickness, whereas pure Mode I had the lowest CSERR and exhibited non monotonic relationship with bondline thickness. The shape and size of the plastic zone that develops prior to crack propagation was predicted by finite element analysis. Variation of CSERR as a function of adhesive layer thickness was shown to be related to the size of the plastic zone for Mode I and MMB 50% fracture. No correlation was observed for the MMB 75% and Mode II, however.  相似文献   

2.
To measure the sliding mode interlaminar fracture toughness of interply hybrid composites, end notched flexure (ENF) specimens with three different types of stacking sequence have been utilized. Finite element analysis is applied to separate the contribution from different modes on the strain energy release rate. In addition, the methods of beam theory, compliance, and compliance calibration to calculate the GC values are compared. The effects of interface friction, crack length, and specimen width are also discussed. The results show that the crack growth in the three types of specimens is dominated by the sliding mode and the Mode II interlaminar fracture toughness can be approximated. The compliance method is not recommended for hybrid ENF specimens and the effects of interface friction can be neglected. To get rid of the edge effect, the specimen width must be carefully chosen, while the fracture toughness does increase with the initial crack length.  相似文献   

3.
The concept of quasi-static crack propagation is used in the present paper to study quantitatively the effects of environmental fluids on fracture in adhesive joints. The mechanisms and mechanics of environmental adhesive fracture under rising loads are discussed. Two types of cracking behaviour were observed. (1) When the dissolution or the “surface energy reduction” mechanism prevailed, the fracture toughness of the adhesive joint in the environment was reduced. (2) However, when environment-enhanced crazes were formed in the adherend at the crack tip region, the local fracture toughness of the adhesive joint would be increased. But cracking was usually unstable so that crack velocities were not readily measurable.

Except in so far as the adhesive surfaces may have considerable effects, the fracture toughness of an adhesive joint is independent of the specimen geometries used in the present work. Also, the variation of fracture toughness with crack velocity for an Aluminum/ Araldite joint in a carbon tetrachloride solution is reported.  相似文献   

4.
The measurement of the delamination toughness of composites requires fracture tests with well-characterized geometries. Because the delamination toughness is frequently used as a material selection parameter, it is necessary to differentiate between experimental artifacts, data scatter, and changes in the mechanism of delamination. This new Curvature-Driven Delamination (CDD) test for Mode II provides a direct, steady-state measurement of the pure Mode II delamination toughness without the compliance calculations inherent in other delamination test protocols. Like the Wedge-Driven Delamination (WDD) test for Mode I, the CDD Mode II test measures the toughness at controlled crack growth rates. The CDD Mode II test correlates well with the results of the established End-Notch Flexure (ENF) Mode II test but is not subject to the geometric instabilities of that test. Changes in the delamination mechanism are easily observed by the direct, continuous measurement of the toughness in the CDD Mode II test.  相似文献   

5.
ABSTRACT

Adhesively bonded joints have been increasingly used in structural applications over mechanical joints. Cohesive Zone Modelling (CZM) is the most widespread technique to predict the strength of these joints, and it uses the tensile fracture toughness (GIC) and the shear fracture toughness (GIIC). Different fracture characterization methods are available for shear loadings, among which the End-Notched Flexure (ENF) is undoubtedly the most popular. The 4-Point End-Notched Flexure (4ENF) is also available. This work consists of a detailed comparison between the ENF and 4ENF tests for the experimental estimation of GIIC of bonded aluminium joints. Three adhesives were used: a strong and brittle (Araldite® AV138), a less strong but with intermediate ductility (Araldite® 2015) and a highly ductile (SikaForce®7752). Different data reduction methods were tested, and the comparison included the load-displacement (P-δ) curves, resistance curves (R-curves) and measured GIIC. It was found that the ENF test presents a simpler setup and has a higher availability of reliable data reduction methods, one of these not requiring measuring the crack length (a) during its growth. For the 4ENF test, only one test method proved to be accurate, and the test geometry revealed to be highly affected by friction effects.  相似文献   

6.
In this paper, a new epoxy adhesive has been mechanically characterized. The adhesive combines the properties of an epoxy adhesive and typical polyurethane (PU) adhesive, such as high elongation and high toughness. Experimental tests were performed to measure the tensile properties, shear properties, thermal properties and fracture properties. The tensile test shows high tensile strength and high elongation. The single lap joint (SLJ) test shows that the failure load is proportional to the overlap length for hard steel adherends. For the SLJs with mild steel adherends, the failure occurred due to adherend yielding. Impact tests were conducted using SLJ specimens and the results are consistent with the SLJ tested under static conditions. The Tg was obtained using a Dynamic Mechanical Analysis (DMA) type of test. The toughness in mode I was determined using the Double Cantilever Beam (DCB) test and the toughness in mode II using End Notched Flexure (ENF) test.  相似文献   

7.
To investigate the effect of including carbon beads on the mechanical properties of epoxy resin, the fracture toughness of carbon bead‐filled epoxy was earlier evaluated using a CT (compact tension) specimens and Mode I fracture toughness was observed. Based on those results, in this study, the Mode II interlaminar fracture toughness of carbon bead filled epoxy/glass fiber hybrid composites was evaluated using end notch flexure (ENF) specimens. The hybrid composites showed increased Mode II interlaminar fracture toughness. The optimal bead volume fraction was around 15%.  相似文献   

8.
The end-notched flexure (ENF) test calculates the value of mode II fracture energy in adhesive bonding between the substrates of same nature. Traditional methods of calculating fracture energy in the ENF test are not suitable in cases where the thickness of the adhesive is non-negligible compared with adherent thicknesses. To address this issue, a specific methodology for calculating mode II fracture energy has been proposed in this paper. To illustrate the applicability of the proposed method, the fracture energy was calculated by the ENF test for adhesive bonds between aluminium and a composite material, which considered two different types of adhesive (epoxy and polyurethane) and various surface treatments. The proposed calculation model provides higher values of fracture energy than those obtained from the simplified models that consider the adhesive thickness to be zero, supporting the conclusion that the calculation of mode II fracture energy for adhesives with non-negligible thickness relative to their adherents should be based on mathematical models, such as the method proposed in this paper, that incorporate the influence of this thickness.  相似文献   

9.
Viscous flow that often occurs in adhesive materials leads to a permanent deformation when adhesives are subjected to creep loading. Creep loading has a significant influence on the strength of bonded structures. Due to the viscous behavior, the fracture energy also may change with time for joints that experience creep loading in service. In this work the effects of two creep parameters (creep load and time) on the residual mode II fracture energy of an adhesive was investigated using end notched flexure (ENF) specimens. To achieve this, ENF samples were subjected to different creep loading levels at different creep times followed by quasi static tests to obtain the residual shear fracture energy of the adhesive. Experimental results showed that pre-creep loading of the bonded structures can significantly improve the fracture energy and the static strength of the joints.  相似文献   

10.
The combined effect of varying test temperature and loading rate on the Mode II fracture toughness of plasma-treated GFRP Nylon-6,6 composites bonded using a silica-reinforced epoxy adhesive has been studied. End notch flexure tests have shown that the adhesive system used in this study offers a wide range of fracture energies that are extremely sensitive to changes in temperature and loading rate. Increasing the test temperature resulted in a substantial reduction in the Mode II fracture toughness of the adhesive, with the value of GIIc at 60°C being approximately one-half of the room temperature value. In contrast, increasing the crosshead displacement rate at a given temperature has been shown to increase the value of GIIc by up to 250%. Compression tests performed on bulk adhesive specimens revealed similar trends in the value of [sgrave]y with temperature and loading rate. In addition, it was found that the plasma treatment employed in this study resulted in stable crack propagation through the adhesive layer under all testing conditions.

A more detailed understanding of the effect of varying temperature and loading rate on the failure mechanisms occurring at the crack tip was achieved using the double end notch flexure (DENF) geometry, which was considered in tandem with the fracture surface morphologies. Here, changes in the degree of matrix shear yielding and particle-matrix debonding were used to explain the trends in [sgrave]y and GIIc.  相似文献   

11.
An improved analytical model is proposed for characterizing the fracture behavior of an adhesively bonded double cantilever beam joint under Mode I loading. Novel interfacial normal stress distribution function is used with a key parameter c that is determined using continuum mixture theory. In addition to the mechanical and sectional properties of the adherends, crack length, and overlap area, the model also incorporates the adhesive thickness and material properties as well as the crack tip rotation. Model prediction of the fracture toughness of the joint is entered into finite element analysis to simulate crack propagation under peel loading. The effect of various parameters on the joint fracture properties is discussed. Results show that the proposed model provides better correlation with published experimental data.  相似文献   

12.
《Polymer Composites》2017,38(8):1732-1740
In this study, flax fiber reinforced and flax/basalt hybridized vinyl ester composites were produced and their interlaminar fracture toughness (mode II) behavior was investigated using the three‐point bend end‐notched flexural (3ENF) testing. From the results, the average of the maximum values for each group of specimen obtained for critical strain energy release rate G IIC and stress intensity factor K II for flax/vinyl ester specimens were 1,940 J/m2 and 134 kPam0.5. Similarly, G IIC and K II values recorded for hybridized specimens were 2,173 J/m2 and 178 kPam0.5, respectively. The results for the flax/basalt hybridized composites exhibited an improved fracture toughness behavior compared to flax/vinyl ester composites without hybridization. The cohesive zone modeling (CZM) was also used to predict the delamination crack propagation in mode‐II in laminated composite structures. After the experimental study, the 3ENF specimens were modeled and simulated using ANSYS. The CZM/FEA results were in reasonable agreement with the experimental results. POLYM. COMPOS., 38:1732–1740, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
In this paper, environmental strength degradation of 180 different adhesive single lap joints (SLJ), including mono-adhesive Araldite 2015, mono-adhesive Araldite AV138, and a mixed-adhesive of Araldite 2015 and Araldite AV138 subjected to moist conditions are experimentally studied. Four different moist conditions, i.e. dry, 75.3, 84.2 RH% and immersion in tap water, have been taken into consideration and the specimens are tested after exposing to these environments at room temperature for 0, 35, 80 and 270 days. The specimens have been tested in two different strain rate, i.e. 1 mm/min and 100 mm/min. The results reveal that although, in a dry environment, mixed-adhesive joints have higher failure loads in comparison to mono-adhesive SLJs, in a moist environment, they have the highest reduction in static failure load with regard to the mono-adhesive ones. Moreover, despite the finally brittle trend in failure load, mixed-adhesives manifest a behavior very similar to ductile mono-adhesives regarding elongation. Analytical predictions of failure load are also consistent with the experimental observations in dry condition.  相似文献   

14.
The aim of this study is to determine the fracture toughness of phenolic resin and its composite. Fracture tests on phenolic resin resulted in a fracture toughness close to values quoted for unmodified epoxy resins. Composite specimens of glass fiber reinforced phenolic were also tested. The interlaminar fracture toughness in both mode I and mode II failures was determined. The mode I initiation values were lower than the neat resin's toughness. Mode I propagation values were strongly influenced by fiber bridging. The mechanism of fiber bridging was found to be sensitive to specimen dimensions. The effect of fiber bridging on the mode I analysis is discussed. Fiber bridging was also evident in mode II failures. Two different geometries were used for the mode II tests (end loaded split and end notched flexure); a correlation between the results from the two geometries is made.  相似文献   

15.
Mode II fracture behavior of poly(butylene terephthalate) (PBT)-modified epoxy systems are studied. Two different types of testing for mode II fracture are conducted. One was to investigate the fracture behavior of bulk epoxy systems, in comparison with mode I fracture, using single-edge notched specimens under skew symmetric four-point loading. The other was to investigate the fracture behavior of epoxy layers sandwiched between aluminium adherends using compact shear specimens. The mode II fracture toughness obtained from the former for modified systems has been found to increase significantly over the control, although the increase of mode I fracture toughness for modified systems over the control is moderate. This finding is discussed in relation with cavitation and equivalent mode I stress intensity factor and also in comparison with rubber-modified epoxy systems in the literature to account for the increase. In addition, the difference in fracture morphology between mode I and II is discussed. Mode II fracture toughness obtained from the latter for modified systems has also been found to increase significantly over the control. Morphology of fracture surfaces relating to this finding is discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 405–415, 1998  相似文献   

16.
In this work, a parameter identification approach was developed based on a combined experimental-numerical approach to determine the optimal set of adhesive parameters in adhesively bonded specimen subjected to various post curing treatments. End-Notched Flexure (ENF) testing was conducted to characterise the Mode II fracture property under both recommended and post curing conditions, providing benchmark data for the numerical analysis stage. Experimental results revealed that Mode II fracture energy was effectively affected by the post curing history, with higher temperature and longer curing duration leading to enhanced fracture resistance. The numerically identified Cohesive Zone Model (CZM) parameters using multi-island genetic algorithm provided good correlation in Mode II fracture energies between Finite element (FE) modelling and experimentally measured values, thus extensive experimental characterisation work to determine the adhesive parameters can be effectively eliminated.  相似文献   

17.
This investigation is focused on the influence of glass fiber surface treatment on the interlaminar fracture toughness of unidrectional laminates. Three different fiber surface treatments were considered: polyethylene treated fibers to get poor adhesion, silance treated fibers to get good bond strength, and industrial fibers without special treatments with the coupling agents. The interlaminar fracture behavior of unidirectional glass fiber reinforced composites with different fiber surface treatments has been investigated in mode I, mode II, and for the fixed mixed mode I/II ratio 1.33. Double cantilever beam (DCB), end notched flexure (ENF), and mixed mode flexure (MMF) specimens were used. The data obtained from these tests were analyzed by using different analytical approaches and the finite element method. For the fibers treated with the silane coupling agent, a value about 2.5 times higher of mode II interlaminar fracture toughness for crack initiation was obtained in comparison with the polyethylene sized composite. For the composite made from the industrial fibers, a value about 2 times higher was obtained. Because of extensive fiber bridging and pullout in the composites with poor fiber/matrix adhesion, the results of mode I and mixed mode I/II tests did not characterize the interphase quality. In order to determine the interphase quality, the mode II tests are recommended.  相似文献   

18.
Abstract

Adhesive bonding is the best alternative to riveting in aircraft structures but the strength of the adhesive bonded joint is low and is limited by strength of adhesive. Strengthening of adhesive bonding is an important requirement. In this work, an attempt has been made to strengthen the adhesive bonding by mixing different quantities of brittle adhesive in the ductile adhesive and vice-versa. Two different adhesives, one brittle (AV138) and another ductile (Araldite-2015) adhesive have been considered. Initially single lap joint has been constructed between the CFRP and aluminium with individual adhesives, then the mixture of adhesives have been used in the bonded region in varied proportions. The X-ray radiography and ultrasonic testing have been performed to check the quality of bonding. Uniaxial tensile tests have been conducted on the lap joints along with Digital Image Correlations (DIC) to obtain the individual and mixed adhesive bond strength. The failure patterns have been identified using optical and scanning electron microscope. These studies indicate that strengthening of the adhesive bonding achieved by mixing of two adhesives and highest bond strength obtained when the mixture of AV138 and Araldite-2015 adhesives are used in equal proportions.  相似文献   

19.
Effect of Bond Thickness on Fracture Behaviour in Adhesive Joints   总被引:2,自引:0,他引:2  
To study the effects of bond thickness on the fracture behaviour of adhesive joints, experimental investigation and finite element analysis have been carried out for compact tension (CT) and double-cantilever-beam (DCB) specimens with different bond thickness. Fractography and fracture toughness exhibited apparent variations with bond thickness. Numerical results indicate that the crack tip stress fields are affected by bond thickness due to the restriction of plastic deformation by the adherends. At the same J level, a higher opening stress was observed in the joint with a smaller bond thickness (h). Beyond the crack tip region, a self-similar stress field can be described by the normalized loading parameter, J/hσ0. The relationship between J and crack tip opening displacement, δ, is dependent on the bond thickness. The strong dependence of toughness upon bond thickness is a result of the competition between two different fracture mechanisms. For small bond thickness, toughness is linearly proportional to bond thickness due to the high constraint. After reaching a critical bond thickness, the toughness decreases with further increase of bond thickness due to the rapid opening (blunting) of the crack tip with loading. A simple model has been proposed to predict the variation of toughness with bond thickness.  相似文献   

20.
To study the effects of bond thickness on the fracture behaviour of adhesive joints, experimental investigation and finite element analysis have been carried out for compact tension (CT) and double-cantilever-beam (DCB) specimens with different bond thickness. Fractography and fracture toughness exhibited apparent variations with bond thickness. Numerical results indicate that the crack tip stress fields are affected by bond thickness due to the restriction of plastic deformation by the adherends. At the same J level, a higher opening stress was observed in the joint with a smaller bond thickness (h). Beyond the crack tip region, a self-similar stress field can be described by the normalized loading parameter, J/hσ0. The relationship between J and crack tip opening displacement, δ, is dependent on the bond thickness. The strong dependence of toughness upon bond thickness is a result of the competition between two different fracture mechanisms. For small bond thickness, toughness is linearly proportional to bond thickness due to the high constraint. After reaching a critical bond thickness, the toughness decreases with further increase of bond thickness due to the rapid opening (blunting) of the crack tip with loading. A simple model has been proposed to predict the variation of toughness with bond thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号