首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wheel robot soccer speed control system using a ball object detection method and PID controller. A control system is based on the object detection system's behavior based on the robot position's orientation to the target position. PIDs are instruments, pressure, speed, and other operational factors used in control, temperature adjustment flow, and industrial control applications. The PID controller uses control loop feedback dynamics to control functional variables and is the most accurate and stable controller. The robot position is held by placing the ball vertically. When the robot's work is perpendicular to the ball, the robot moves with a certain speed controlled by the PIT controller based on the robot's distance and the ball. Standard conditions (standard ball) test results show that the robot can detect the ball material while in the vertical position, whether on the robot's right or left. In the random test that changes direction, the robot can move more dynamically as the ball's change in place.  相似文献   

2.
Conventional state-space model predictive control requires a state estimator/observer to access the state information for feedback controller design. Its drawbacks are the numerical convergence stability of the observer and closed-loop control performance deterioration with activated plant input/output constraints. The recent direct use of measured input and output variables to formulate a non-minimal state-space (NMSS) model overcomes these problems, but the subsequent controller is too sensitive to model mismatch. In this article, an improved structure of NMSS model that incorporates the output-tracking error is first formulated and then a subsequent predictive functional control design is proposed. The proposed controller is tested on both model match and model mismatch cases for comparison with previous controllers. Results show that control performance is improved. In addition, a linear programming method for constraints dealing and a closed form of transfer function representation of the control system are provided for further insight into the proposed method.  相似文献   

3.
本文对混合悬浮系统精确的数学模型进行了分析,分别对传统的PID直接反馈控制器和带状态观测器的状态反馈控制器进行了设计和比较,仿真结果表明,这两种控制器都能够使悬浮系统达到稳定,但是后者可以解决气隙速度信号估算的难题.  相似文献   

4.
This paper presents a method to design a discrete-time track following controller using a state-space disturbance observer. To improve sensitivity, an add-on state-space disturbance observer is introduced to a LQG/LTR track following controller, which does not affect the observer and state feedback poles thereby preserving the separation principle. Therefore disturbance observer design is possible to shape the sensitivity without affecting the stability of the LQG/LTR track following controller. The proposed disturbance observer is designed in state-space without disturbance model such as plant's inverse dynamics, periodic signal generator, and Q filter. Simulation and experimental results verify the effectiveness of the proposed design method using a disturbance observer.  相似文献   

5.
We present nonlinear control techniques to stabilize a beam‐balance system with state constraints. We consider two different actuator configurations: the first one is actuated by a cart moving on the beam, while in the second case, the actuation is by a single electromagnet. In the first case, the constrained stabilization problem is solved via an output feedback controller designed using feedback linearization, Luenberger‐like observer and linear matrix inequality based optimization. In the second case, a Lyapunov‐based controller is proposed that takes care of both the input and state constraints. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A novel methodology for designing multivariable High-Order Sliding-Mode (HOSM) controllers for disturbed feedback linearizable nonlinear systems is introduced. It provides for the finite-time stabilization of the origin of the state-space by using output feedback. Only the additional assumptions of algebraic strong observability and smooth enough matched disturbances are required. The control problem is solved in two consecutive steps: firstly, designing an observer based on the measured output and, secondly, designing of a full-state controller computed from a new virtual output with vector relative degree. The introduced notion of algebraic strong observability allows recovering the state of the system using the measured output and its derivatives. By estimating the required derivatives through the HOSM differentiator, a finite-time convergent observer is constructed.  相似文献   

7.
The output feedback control of the popular magnetic ball levitation system is addressed from a suitable combination of several complementary viewpoints. We use: first, recent developments on exact feedforward linearisation controllers for nonlinear flat systems to substantially reduce the linear feedback controller efforts through pre-compensation. Second, an on-line ball velocity estimation strategy is proposed by using a model-based integral reconstructor, which is a linear combination of iterated integrals of the input and the output of the system, thus avoiding the use of traditional observers or noisy derivative estimations. Finally, we use a generalised proportional integral (GPI) controller which compensates the errors in the integral reconstructor and further bestows the enhanced robustness on the closed-loop system via output tracking error iterated integration feedback. This methodology only requires the measurements of the position of the levitated ball and of the control input voltage. The proposed feedback regulation scheme is shown to locally guarantee an asymptotically exponentially stable behaviour of the controlled ball position and, definitely, allows for the possibilities of safely carrying out the rest-to-rest trajectory tracking tasks on the ball position. The proposed output feedback controller is actually implemented on a laboratory prototype with excellent experimental results for, both, stabilisation and trajectory tracking tasks.  相似文献   

8.
运用自抗扰控制技术,分别对永磁同步直线电机的直轴电流id和动子速度口设计了控制器.直轴电流的白抗扰控制器除完成对id控制外,还要借助于控制器中的扩张状态观测器(ESO),完成对动子速度的辨识.速度的辨识信号作为速度环自抗扰控制器的反馈信号,从而可设计出一种新型的无速度传感器永磁直线电机的控制系统.由于采用基于过程误差的非线性控制律,观测器受电机参数的影响极小,具有算法简单、辨识精度高等优点。  相似文献   

9.
This short paper Treats the problem of designing output deadbeat controllers having the property that the control input to the system converges to zero as time goes to infinity, for discrete-time multivariable linear systems. Two configurations of controllers are considered: one is of state feedback; the other is a dynamic controller using an observer. The existence of such controllers is examined, and the methods are presented for designing such controllers when they exist. The controller using a state feedback obtained in this paper is optimal in the sense that the controller settles the output in zero for any initial state in the minimum number of steps. On the other hand, the dynamic controller is not optimal in that sense, but it minimizest, wheretis defined as an integer such that the controller drives the output to zero in no more thantsteps for any set of initial conditions of the system and the observer.  相似文献   

10.
在动力学运动方程的基础上,构建了一种系统状态观测器,该观察器能够精确估计被控对象的位置、速度和加速度而无需知道其数学模型。在此基础上,设计了一种通用控制器,该控制器通过系统运动的位置、速度和加速度的负反馈作用,把原被控对象的输出轨迹引导控制到期望的系统输出轨迹,能提高系统的控制品质和鲁棒性能。分析了PID控制器、内模控制器、状态控制器、预测控制器和鲁棒控制器的算法特性,指出这些控制器与所设计的通用控制器在动力学意义上具有等价性。  相似文献   

11.
The problem of state observation and position control by output feedback for a nonlinear three degrees-of-freedom (3-DOF) parallel kinematic machine (PKM) system is considered, based on the limited signal availability (only the moving platform displacement measurements are assumed available). Unknown velocity signals are estimated via a nonlinear robust observer that is designed for the nonlinear system with observable linear dynamics part and bounded nonlinearities and disturbances, and that guarantees global exponential stability of the observation error. A proportional-derivative (PD) controller is designed to solve the position control problem, utilizing the estimated velocity, as well as the gravitation compensation, dynamic friction and external disturbance compensation for the PKM. The closed-loop system is proven to have global asymptotical stability according to the Lyapunov analysis method and LaSalle’s invariance principle. Performance of the resulting observer and controller is illustrated in a simulation study of a 3-DOF PKM. Modifications to the nonlinear observer and control law are discussed, that assure convergence of the position error and state observation error to zero when the upper bounds on the model uncertainties/disturbances are not known a priori.  相似文献   

12.
针对动力定位系统数学模型不够精确,而且具有很强的非线性特性问题,采用自抗扰控制算法设计其控制器.该控制算法无需精确的数学模型,主要利用扩张状态观测器估计船舶运动位置、速度和总扰动,最后通过反馈控制对其进行补偿,从而实现船舶动力定位的精确控制.但实际工程中,船舶的测量系统的测量噪声是难以避免的,为了避免测量噪声的影响,针对所设计的扩张状态观测器采用FA L函数滤波器,在测量信号进入扩张状态观测器之前进行滤波,以减小测量噪声的影响.从而使得其反馈控制更加精确.最后以一艘供给船为例进行仿真分析,验证了所设计非线性控制器的有效性和鲁棒性.  相似文献   

13.
A state-space approach to the Youla parameterization of stabilizing controllers for linear and nonlinear systems is suggested. The stabilizing controllers (or a class of stabilizing controllers for nonlinear systems) are characterized as fractional transformations of stable parameters. The main idea behind this approach is to decompose the output feedback stabilization problem into state feedback and state estimation problems. The parameterized output feedback controllers have separation structures. This machinery allows the parameterization of stabilizing controllers to be conducted directly in state space without using coprime factorization  相似文献   

14.
15.
微型飞行器具有高度的非线性特性,且气动参数具有不确定性,难以建立精确的数学模型;为实现其姿态、速度、以及高度的精确鲁棒控制,基于自抗扰控制方法设计了微型飞行器速度回路和高度回路的控制器;首先建立了微型飞行器的非线性模型,然后利用扩张状态观测器对飞行器状态和气动不确定性因素进行了估计,并通过非线性反馈对模型不确定性部分和状态耦合进行补偿,实现了纵向通道的解耦控制;通过仿真对所设计的控制器进行性能验证,结果表明自抗扰控制器能够实现对微型飞行器的快速稳定控制,且不依赖于精确的飞行器数学模型,具有良好的鲁棒性。  相似文献   

16.
基于观测器的一类连续非线性系统的采样控制   总被引:1,自引:0,他引:1  
张健  徐红兵  张洪斌 《自动化学报》2010,36(12):1780-1787
首先使用反演方法分别设计了系统的连续时间状态反馈控制器、连续时间观测器和基于连续时间观测器的连续时间控制器. 接下来, 利用零阶保持法对连续时间状态反馈控制器进行离散化, 获得了状态反馈采样控制器; 利用零阶保持法对基于连续时间观测器 的连续时间控制器离散化, 获得了基于连续时间观测器的采样控制器; 利用Euler法对连续时间观测器离散化, 同时利用零阶保持法对控制器离散化, 从而获得了采样观测器和基于采样观测器的采样控制器. 本文论证了上述状态反馈采样控制器和基于连续时间观测器的采样控制器可以保证闭环系统渐近稳定, 而基于采样观测器的采样控制器可以保证被控对象的状态是有界的, 其最终边界依赖于设计参数与采样周期. 最后, 通过选择适当的采样周期, 完成了闭环采样控制系统的设计. 一个船舶航向控制的例子表明应用本文 所提方法设计出的三种采样控制器具有良好的控制效果.  相似文献   

17.
基于线性时不变系统能控能观标准型变换及非线性系统高增益观测器方法,本文研究了一类线性时变系统 的输出反馈控制问题. 通过引入时变的状态变量坐标变换,分别设计了线性时变系统的状态反馈控制器、状态观测器以及基于 状态观测器的输出反馈控制器. 进一步地,本文分别证明了观测器动态误差是渐近收敛于零的,而状态反馈控制器以及输出反馈控制器可以 保证闭环系统的渐近稳定性.  相似文献   

18.
A nonlinear predictive generalised minimum variance control algorithm is introduced for the control of nonlinear discrete-time multivariable systems. The plant model is represented by the combination of a very general nonlinear operator and also a linear subsystem which can be open-loop unstable and is represented in state-space model form. The multi-step predictive control cost index to be minimised involves both weighted error and control signal costing terms. The solution for the control law is derived in the time domain using a general operator representation of the process. The controller includes an internal model of the nonlinear process, but because of the assumed structure of the system, the state observer is only required to be linear. In the asymptotic case, where the plant is linear, the controller reduces to a state-space version of the well-known GPC controller.  相似文献   

19.
年晓红  曹莉 《自动化学报》2006,32(5):807-812
研究了线性系统基于二次型指标的最优状态观测器和最优状态反馈控制器的设计问题.将观测状态的状态反馈和状态误差的输出反馈分别作为两个对局方,应用微分对策理论研究了系统的最优控制问题.给出了最优状态观测器和基于状态观测器的最优状态反馈控制的存在性条件.将系统的最优状态观测器和最优控制器的设计问题转化为一对Riccati方程的求解问题.研究表明最优状态观测器在一般情况下不存在.并进一步研究了基于状态观测器的次优控制问题,给出了基于LMI的优化算法.  相似文献   

20.
A method is presented for the output-feedback control of discrete-time linear systems with hard constraints on state and control variables. Prior work has shown that optimal controllers for constrained systems take the form of a nonlinear feedback law acting on a set-valued state estimate. In this paper, conventional state estimation schemes are used. A nonlinear control law is derived which views the state estimation error as a disturbance. The resulting control law is then used in conjunction with the conventional observer, rather than set-valued observer, to achieve the desired constrained regulation. The significantly reduced real-time computations come at the cost of restricting the controller structure and thereby introducing possible conservatism in the achievable performance. The results are specialized to the problem of anti-windup for systems with control saturations. A “measurement governor” scheme is introduced that alters plant measurements in such a way to improve performance in the presence of controller saturations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号