首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the role of material properties on crack path selection in adhesively bonded joints. First, a parametric study of directionally unstable crack propagation in adhesively-bonded double cantilever beam specimens (DCB) is presented. The results indicate that the characteristic length of directionally unstable cracks varies with the Dundurs' parameters characterizing the material mismatch. Second, the effect of interface properties on crack path selection is investigated. DCB specimens with substrates treated using various surface preparation methods are tested under mixed mode fracture loading to determine the effect of interface properties on the locus of failure. As indicated by the post-failure analyses, debonding tends to be more interfacial as the mode II fracture component in the loading increases. On the other hand, failures in specimens prepared with more advanced surface preparation techniques appear more cohesive for given loading conditions. Using a high-speed camera to monitor the fracture sequence, DCB specimens are tested quasi-statically and the XPS analyses conducted on the failure surfaces indicate that the effect of crack propagation rate on the locus of failure is less significant when more advanced surface preparation techniques are used. The effect of asymmetric interface property on the behavior of directionally unstable crack propagation in adhesive bonds is also investigated. Geometrically-symmetric DCB specimens with asymmetric surface pretreatments are prepared and tested under low-speed impact. As indicated by Auger depth profile results, the centerline of the crack trajectory shifts slightly toward the interface with poor adhesion due to the asymmetric interface properties. Third, through varying the rubber content in the adhesive, DCB specimens with various fracture toughnesses are prepared and tested. An examination of the failure surfaces reveals that directionally unstable crack propagation is more unlikely to occur as the toughness of the adhesive increases, which is consistent with the analytical predictions that were discussed using an energy balance model.  相似文献   

2.
The adhesive fracture energy or fracture toughness of adhesively-bonded joints comprising carbon-fiber-reinforced polymer composite substrates and three different types of adhesives was detemined using a modified single-lap joint (MSLJ). This joint was made by implanting end pre-cracks in the adhesive layer at the center of the bondline of a conventional single-lap joint (SLJ). This modification ensured that the crack propagated from a sharp starter crack from both ends of the overlap during testing, reducing the effect of spew fillets on the measured adhesive fracture toughness scatter band. The MSLJ specimens were tested to failure and the adhesive fracture energy was calculated using the Kinloch–Osiyemi model. The values of the adhesive fracture energy obtained from the MSLJ tests were compared with those from SLJ and the double-cantilever beam (DCB) test geometries. The fracture energy values obtained from the MSLJ specimens were significantly lower than those from SLJ specimens and agreed well with those from DCB specimens. The three differenent types of aerospace grade film adhesives tested were Redux 322, Redux 335K and Redux 319A.  相似文献   

3.
An experimental study was conducted on the strength of adhesively bonded steel joints, prepared epoxy and acrylic adhesives. At first, to obtain strength characteristics of these adhesives under uniform stress distributions in the adhesive layer, tensile tests for butt, scarf and torsional test for butt joints with thin-wall tube were conducted. Based on the above strength data, the fracture envelope in the normal stress-shear stress plane for the acrylic adhesive was compared with that for the epoxy adhesive. Furthermore, for the epoxy and acrylic adhesives, the effect of stress triaxiality parameter on the failure stress was also investigated. From those comparison, it was found that the effect of stress tri-axiality in the adhesive layer on the joint strength with the epoxy adhesive differed from that with the acrylic adhesive. Fracture toughness tests were then conducted under mode l loading using double cantilever beam (DCB) specimens with the epoxy and acrylic adhesives. The results of the fracture toughness tests revealed continuous crack propagation for the acrylic adhesive, whereas stick-slip type propagation for the epoxy one. Finally, lap shear tests were conducted using lap joints bonded by the epoxy and acrylic adhesives with several lap lengths. The results of the lap shear tests indicated that the shear strength with the epoxy adhesive rapidly decreases with increasing lap length, whereas the shear strength with the acrylic adhesive decreases gently with increasing the lap length.  相似文献   

4.
Mixed-mode fracture of an adhesively-bonded structure made from a commercial adhesive and a dual-phase steel has been studied under different rates. Since mixed-mode fracture occurs along the interface between the steel and the adhesive, the cohesive parameters for the interface were required. The mode-II interfacial properties were deduced in earlier work. In this paper the mode-I interfacial toughness and the mode-I interfacial strength were determined at different rates. The mode-I interfacial strength was not affected by rate up to crack velocities at levels associated with impact conditions, and was essentially identical to the cohesive strength appropriate for crack growth within the adhesive layer. The mode-I toughness was reduced by about 40% when the crack propagated along the interface rather than within the adhesive. Furthermore, transitions to a brittle mode of failure occurred in a stochastic fashion, and were associated with a drop in interfacial toughness by a factor of about five. The mode-I interfacial parameters were combined with the previously-determined mode-II interfacial parameters within a cohesive-zone model to analyze the mixed-mode fracture of the joints which exhibited both quasi-static and unstable fracture. The mixed-mode model and the associated cohesive parameters for both quasi-static and unstable crack propagation provide bounds for predicting the behavior of the bonded joints under various rates of loading, up to the impact conditions that could be appropriate for automotive design.  相似文献   

5.
计操  周国发 《中国塑料》2021,35(3):59-66
针对金属基聚合物复合材料易诱发界面剥离损伤失效的共性问题,研究了通过多层复合组装注射成型,在聚合物复合层与粘接层界面形成短纤维桥接,实现复合界面强化.基于内聚力剥离损伤模型,构建了短纤维桥接强化界面剥离裂纹扩展断裂失效过程的模拟仿真技术,模拟建立了界面剥离裂纹快速失稳扩展断裂损伤失效临界载荷—桥接纤维特性—界面剥离断裂...  相似文献   

6.
In this work, the fracture characterisation of wood-bonded joints under pure mode I and mode II loading was performed. The tested material was maritime pine (Pinus pinaster Ait.) bonded with an epoxy adhesive. Two fracture mechanical tests were chosen: the double cantilever beam (DCB) for opening mode I loading, and the end-notched flexure (ENF) for sliding mode II loading. The compliance-based beam method (CBBM) was used for both mode I and mode II fracture, since the Resistance-curves can be obtained directly from the global mechanical response of the specimens (load–displacement curve), without crack monitoring during propagation. This data reduction scheme was validated by direct comparison with the modified experimental compliance method (MECM).  相似文献   

7.
The current work is focused on the adhesion characteristics of vacuum infused repair patches on variously pretreated composite surfaces, given that the impregnation resin acts both as a consolidation agent of the reinforcement as well as a very thin bonding medium on a composite substrate. Initially, the pretreated surfaces, on which the repair patches were infused, were characterized with a number of surface analysis techniques such as X‐ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), laser profilometry, dynamic contact angle and surface energy analysis. Double cantilever beam (DCB) repairs were then considered as the macroscopic method of assessment by infusing layers of carbon woven fabric onto the surface pretreated composite laminates. The behavior of the asymmetric DCB configuration was also studied by finite element modeling, for cohesive crack growth within the bondline, using the virtual crack extension (VCE) method. DCB testing results showed that the fracture resistance curves obtained from the repairs were lower than the numerical resistance curves. This was attributed to the preferential crack trajectory at the receptive infusion resin/pretreated composite interface. Correlation of the experimental fracture energies with the surface property data, revealed an explicit relationship between the surface roughness and the interfacial adhesion of the repair patches during crack initiation and propagation. The strain energy release rates of the DCB repairs were increased with increased surface roughness without dramatic change of the failure mode, as verified by the post‐failure examination of the fractured surfaces using scanning electron micrographs. POLYM. COMPOS., 29:92–108, 2008. © 2007 Society of Plastics Engineers  相似文献   

8.
The main aim of this article is to investigate the effect of frequency on fatigue crack propagation in adhesively bonded joints. Adhesively bonded double-cantilever beam (DCB) samples were tested in fatigue at various frequencies between 0.1 and 10 Hz. The adhesive used was a toughened epoxy, and the substrates used were a carbon fibre-reinforced polymer (CFRP) and mild steel. Results showed that the crack growth per cycle increases and the fatigue threshold decreases as the test frequency decreases. The locus of failure with the CFRP adherends was predominantly in the adhesive layer, whereas the locus of failure with the steel adherends was in the interfacial region between the steel and the adhesive. The crack growth was faster, for a given strain energy release rate, and the fatigue thresholds lower for the samples with steel adherends. Tests with variable frequency loading were also carried out, and a generalised method of predicting crack growth in samples subjected to a variable frequency loading was introduced. The predicted crack growth using this method agreed well with experimental results.  相似文献   

9.
The Mode I fracture energy of a polyurethane adhesive with low Young’s modulus was investigated. Metal adherends in standardized double cantilever beam (DCB) tests are typically too stiff for soft adhesives, making it difficult to measure the fracture energy accurately. However, soft adhesives, such as a single-component polyurethane adhesive tested in this paper, are in high demand in the automobile industry. Thus, accurate measurement techniques must be established. Flexible substrates composed of spring steel were used for the DCB tests to accommodate the deformation of the adhesive layer. First, the applicability of the flexible substrates was discussed using specimens bonded with an epoxy adhesive. For soft adhesives, however, the deformation of the adhesive layer must be considered in the calculation methods of the fracture energy. Although the deformation effect on the DCB tests has been discussed with Winkler’s elastic foundation, the crack length must be measured along with the load and displacement. To overcome the difficulty of measuring the crack length, a calculation method based on Winkler’s elastic foundation was introduced applying the compliance-based beam method (CBBM). Finally, the fracture energy of the polyurethane adhesive was discussed by comparing the calculation methods with and without measuring the crack length.  相似文献   

10.
Double Cantilever Beam (DCB) specimens were made from aluminium plates bonded with Hysol®EA9321 epoxy adhesive. These were tested both under monotonic and cyclic loading conditions. Experimental testing data were obtained from classic force and displacement measurements, as well as from backface strain recordings. Apart from the usual crack propagation monitoring, evolution of the process zone at the crack tip was studied during the experiment. Results of fatigue were compared with those of standard loading. Despite the viscoelastic nature of the adhesive, an elastic treatment of the results proved most satisfactory. In addition, good agreement was found between experimental and theoretical results obtained with a Timoshenko beam on Winkler elastic foundation model.  相似文献   

11.
Double cantilever beam fracture specimens were used to investigate rate dependent failures of model epoxy/steel adhesively bonded systems. Quasi-static tests exhibited time dependent crack growth and the maximum fracture energies consistently decreased with debond length for constant crosshead rate loading. It was also possible to cause debonding to switch between interfacial and cohesive failure modes by simply altering the loading rate. These rate dependent observations were characterized using the concepts of fracture mechanics. The time rate of change of the strain energy release rate, dG/dt, is introduced to model and predict failure properties of different adhesive systems over a range of testing rates. An emphasis is placed on the interfacial failure process and how rate dependent interfacial properties can lead to cohesive failures in the same adhesive system. Specific applications of the resulting model are presented and found to be in good agreement when compared with the experimental data. Finally, a failure envelope is identified which may be useful in predicting whether failures will be interfacial or cohesive depending on the rate of testing for the model adhesive systems.  相似文献   

12.
《The Journal of Adhesion》2013,89(12):1161-1182

The main aim of this article is to investigate the effect of frequency on fatigue crack propagation in adhesively bonded joints. Adhesively bonded double-cantilever beam (DCB) samples were tested in fatigue at various frequencies between 0.1 and 10 Hz. The adhesive used was a toughened epoxy, and the substrates used were a carbon fibre-reinforced polymer (CFRP) and mild steel. Results showed that the crack growth per cycle increases and the fatigue threshold decreases as the test frequency decreases. The locus of failure with the CFRP adherends was predominantly in the adhesive layer, whereas the locus of failure with the steel adherends was in the interfacial region between the steel and the adhesive. The crack growth was faster, for a given strain energy release rate, and the fatigue thresholds lower for the samples with steel adherends. Tests with variable frequency loading were also carried out, and a generalised method of predicting crack growth in samples subjected to a variable frequency loading was introduced. The predicted crack growth using this method agreed well with experimental results.  相似文献   

13.
Fracture toughness and crack resistance of aluminum adhesive joints were measured at the cryogenic temperature of ?150°C, with respect to the orientation and volume fraction of the E-glass fibers in the epoxy adhesive. Cleavage tests on the DCB (Double Cantilever Beam) adhesive joints were performed using two different test rates of 1.67 × 10?2 and 8.33 × 10?4 mm/s to observe the crack propagation trends. From the experiments, it was found that the DCB joints bonded with the epoxy adhesive reinforced with E-glass fibers not only showed a stable crack propagation with a low crack propagation speed, but also higher fracture toughness and crack resistance than those of the DCB joints bonded with the unreinforced epoxy adhesive at a cryogenic temperature of ?150°C.  相似文献   

14.
This paper presents a methodology for assessing the bond strength of composite overlays to concrete utilizing a fracture toughness test. The principles and practices of existing ASTM standards for determining the fracture toughness of adhesive bonds between double cantilever beam (DCB) metallic and composite specimens (D 3433-93 and D 5528-94a) have been extended to cover the case of an elastic composite layer bonded to a rigid concrete/masonry substrate. In the theoretical section, the dominant loading conditions, relevant ASTM standards, and the development of energy release rate concepts for analyzing a disbonding composite layer modeled as an elastic cantilever beam are presented. The experimental section covers specimen fabrication and preparation, experimental setup, test procedures, post-test evaluation of the specimens, and data processing. The discussion of test results focuses on explaining the variability in measured strain energy release rate, and identifies trends between the measured strain energy release rate and the fraction of the fracture surface retaining cement paste after disbonding. It was found that good-quality composite-to-concrete bond is associated with high fracture toughness of the adhesive and location of the crack path in the concrete substrate. Strict enforcement of surface preparation and adhesive handling procedures was found to play an important role in promoting good bond strength and high fracture toughness. The fracture toughness test developed in this paper can be used for screening various composite-repair systems, to assess the effect of different environmental attacks, and as a quality control tool.  相似文献   

15.
The effect of interface adhesion on the failure characteristics of brittle-ductile layered material was experimentally investigated. Single-edge-notched fracture specimens were prepared by bonding two Homalite-100 layers to a thin aluminum layer using three different types of adhesives. The specimens were loaded under three-point bending and photoelasticity was used for full-field observation of the failure process. Fracture tests revealed two competing modes of failure: delamination along the Homalite-aluminum interface, and crack re-initiation in the Homalite layer across the reinforcing aluminum layer. The failure modes were directly influenced by the characteristics of the adhesive bond. Maximum load retention and energy dissipation capability during the fracture process was observed for a urethane based adhesive that formed an interfacial bond that was resistant to delamination, and additionally exhibited low modulus and large strain-to-failure, thereby suppressing crack re-initiation.  相似文献   

16.
Double cantilever beam fracture specimens were used to investigate rate dependent failures of model epoxy/steel adhesively bonded systems. Quasi-static tests exhibited time dependent crack growth and the maximum fracture energies consistently decreased with debond length for constant crosshead rate loading. It was also possible to cause debonding to switch between interfacial and cohesive failure modes by simply altering the loading rate. These rate dependent observations were characterized using the concepts of fracture mechanics. The time rate of change of the strain energy release rate, dG/dt, is introduced to model and predict failure properties of different adhesive systems over a range of testing rates. An emphasis is placed on the interfacial failure process and how rate dependent interfacial properties can lead to cohesive failures in the same adhesive system. Specific applications of the resulting model are presented and found to be in good agreement when compared with the experimental data. Finally, a failure envelope is identified which may be useful in predicting whether failures will be interfacial or cohesive depending on the rate of testing for the model adhesive systems.  相似文献   

17.
The combined effect of varying test temperature and loading rate on the Mode II fracture toughness of plasma-treated GFRP Nylon-6,6 composites bonded using a silica-reinforced epoxy adhesive has been studied. End notch flexure tests have shown that the adhesive system used in this study offers a wide range of fracture energies that are extremely sensitive to changes in temperature and loading rate. Increasing the test temperature resulted in a substantial reduction in the Mode II fracture toughness of the adhesive, with the value of GIIc at 60°C being approximately one-half of the room temperature value. In contrast, increasing the crosshead displacement rate at a given temperature has been shown to increase the value of GIIc by up to 250%. Compression tests performed on bulk adhesive specimens revealed similar trends in the value of [sgrave]y with temperature and loading rate. In addition, it was found that the plasma treatment employed in this study resulted in stable crack propagation through the adhesive layer under all testing conditions.

A more detailed understanding of the effect of varying temperature and loading rate on the failure mechanisms occurring at the crack tip was achieved using the double end notch flexure (DENF) geometry, which was considered in tandem with the fracture surface morphologies. Here, changes in the degree of matrix shear yielding and particle-matrix debonding were used to explain the trends in [sgrave]y and GIIc.  相似文献   

18.
The effect of substrate material on the fatigue crack propagation rate was investigated using adhesively bonded DCB specimens with CFRP and aluminum substrates. The experimental results show that the increase in thickness of the adherend lowers the fatigue threshold, ΔG th, and raises the crack growth parameter, n, irrespective of the substrate material, and that the crack growth parameter, n, for the aluminum joints is less than that for the CFRP joints. To elucidate the fatigue crack propagation behavior, fracture surface observation and finite element analysis have been conducted. Besides, Gurson's model is applied to the adhesive layer. SEM images show that numerous voids are formed in the fracture surface for the joints with aluminum substrate, but the growth of voids is suppressed for the joints with CFRP substrate. FEM results also show that the void area fraction for the joint with aluminum substrate is greater than that with CFRP substrate. Thus, the above experimental and numerical trends of voids correspond to the trends of the fatigue crack propagation behavior.  相似文献   

19.
Interlaminar fracture properties of melt-infiltrated woven SiC/SiC ceramic matrix composites were investigated using traditional and wedge-loaded double cantilever beam methods. The two methods produced comparable GIC results for some specimens. The difference in boundary conditions between the two methods appeared to influence the crack propagation path. The DCB method, having free-end boundary condition, allowed more interaction between the crack and the composite microstructure than the wedge method did. The effect of fiber tow layout sequence had an effect on the interlaminar properties. Higher toughness was observed for the orientation where crack propagation occurs between planes with more transverse tows. Jump-arrest phenomenon was found to have higher significance on the rising R-curve behavior than fiber bridging.  相似文献   

20.
The effect of carbon nanotubes (CNTs) and carbon nanofibres (CNFs) on mode I adhesive fracture energy (GIC) of double cantilever beam (DCB) joints of carbon fibre-reinforced laminates bonded with an epoxy adhesive has been studied. It was observed that the presence of carbon nanofillers in the epoxy adhesive results in a significant increase in the propagation value of mode I adhesive fracture energy with CNTs producing the largest increase. The toughening mechanisms, analysed using scanning electron microscopy (SEM), for the two nanofiller systems differed: pull-out with CNFs, and pull-out and crack bridging with CNTs. At the macroscopic level there was also a change in the failure mode, with an increased proportion of delamination occurring in the nanoreinforced joints in comparison with the unreinforced. Two different surface treatments were also applied to the laminates: grit blasting and atmospheric plasma. The highest fracture energy was obtained in the grit blasted joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号