首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
To meet the demands of processing residue with high sulfur content, Fushun Research Institute of Petroleum and Petrochemicals (FRIPP) successfully developed the fixed-bed residue hydrotreating technology (S-RHT), which is suitable for treating high sulfur residue to produce diesel oil with low sulfur content, the hydrotreated 350℃ residue is also a good feedstock for RFCC. Based on this technology, Maoming Petrochemical Company constructed the hydrotreating unit with a capacity of 2 Mt/a to treat high sulfur residue, in which loaded FZC series catalysts were developed by FRIPP. The unit was first put into commercial operation at the end of 1999. The commereial operation showed that the catalysts have good activities and the products meet the designed specifications.  相似文献   

2.
In order to meet the urgent need for reducing olefin content in cracked naphtha,the influence of feedstock characteristics on the olefin content was discussed.The different types and perfomance of catalysts developed by RIPP were introduced,Moreover,some effective operation approaches in commercial units presented to serve as a reference to the refiners for catalyst selection.  相似文献   

3.
The current technology for producing the petroleum needle coke is apt to cause overflow of feedstock from the coke drums, instability in operation of.coking unit, low mechanical strength of petroleum coke, and high percentage of coke powder, leading to difficulties in improving the overall quality of needle coke. Therefore, we have developed a new technology for producing the needle coke, featuring the manipulation of temperature range in a narrow scale at high pressure coupled with feedstock alternations. This new kind of technology has been successfully applied in a 60kt/a commercial coking unit. Provided that demand for the feedstock quality is satisfied, petroleum needle coke meeting the international quality standard can be manufactured using RIPP‘s technology for producing petroleum needle coke.  相似文献   

4.
The new generation of DCC catalysts, the DMMC/RMMC series catalysts developed by RIPP are introduced in this paper. The large molecule cracking ability is enhanced by increasing the portion of large pores; and the coke selectivity is improved by adjusting the acidity site density on the matrix surface, while the selective cracking reactions are increased. The sphericity of catalysts is improved by adopting new preparation method. The commercial application results have shown that applying DMMC/RMMC series catalysts with the mixed VGO, VGO plus AR, and hydrotreated VGO feed can increase the propylene yield by 2.43, 1.3 and 0.8 percentage points, respectively, as compared to the previous catalysts along with improvement in some products yields. The refining enterprises can make more profits after applying new series of DCC catalysts.  相似文献   

5.
正The deep catalytic cracking (DCC) technology developed by the SINOPEC Research Institute of Petroleum Processing(RIPP) is a process technology, which can subject the heavy oil feedstock to cracking reactions in the presence of shape-selective solid acid zeolite catalyst under mild reaction conditions to produce low-carbon olefins or iso-olefins and high-octane  相似文献   

6.
To meet the demands for high-octane gasoline and aromatics,catalytic reforming process has been advancing quickly in China.The reforming catalysts developed by RIPP have been used in more than 80% capacity of domestic CCR and SR units.This paper introduces the properties of PSVI CCR catalyst developed by RIPP in recent years and also the result from commercial units.The PS-VI catalyst has high activity and good selectivity,under the same reaction conditions,the carbon on catalyst was lowered by 26% in mass as compared with that of the reference catalyst.Among the SR reforming catalysts,the new type of PRT series catalysts have excellent performance at low reaction pressure compared with the ref.Cat A.The aromatics and reformate mass yields of PRT catalyst were 2%-3% and 3%,respectively ,higher than those of Cat A,and the run length was 30%-40% longer as well,which exhibits good prospect of application.  相似文献   

7.
With the standard of environmental protection becoming increasingly strict, it is required to remove sulfur and aromatics in diesel deeply. RIPP has developed several new hydrogenation catalysts and flexible processes, by means of which clean diesel fuel with low sulfur and low aromatic contents can be produced. From SRGO (Straight Run Gas Oil), which has an aromatic content of less than 30m%, a low sulfur and low aromatic diesel fuel or ultra-low sulfur diesel can be obtained by adopting a new process operating on highly active RN-series catalysts. From a feed with higher aromatic content (A=30-80m%), such as FCC-LCO, a low sulfur and low aromatic diesel fuel can be obtained by the SSHT, MHUG and DDA processes.  相似文献   

8.
The 3rd generation catalytic cracking naphtha selective hydrodesulfurization(RSDS-III) technology developed by RIPP included the catalysts selective adjusting(RSAT) technology, the development of new catalysts and optimized process conditions. The pilot plant test results showed that the RSDS-III technology could be adapted to different feedstocks. The sulfur content dropped from 600 μg/g and 631 μg/g to 7 μg/g and 9 μg/g, respectively, by RSDS-III technology when feed A and feed B were processed to meet China national V gasoline standard, with the RON loss of products equating to 0.9 units and 1.0 unit, respectively. While the feed C with a medium sulfur content was processed according to the full-range naphtha hydrotreating technology, the sulfur content dropped from 357 μg/g in the feed to 10 μg/g in gasoline, with the RON loss of product decreased by only 0.6 units. Thanks to the high HDS activity and good selectivity of RSDS-III technology, the ultra-low-sulfur gasoline meeting China V standard could be produced by the RSDS-III technology with little RON loss.  相似文献   

9.
The RMC technology developed by RIPP has been applied in a 1.5Mt/a medium pressure hydrocracking unit at Shanghai Petrochemical Company. The unit was successfully put on stream in September 2002. Calibration of the performance of the commercial unit has shown that the RMC technology has higher hydrogenation activity and selectivity, and high quality product can be obtained under lower reaction temperature. The heavy naphtha with less than 0.5 ppm of sulfur and 58.5 m% potential aromatic content is a good feedstock for catalytic reforming unit. The diesel with less than 0.5 ppm of sulfur, 6.6 m% aromatics and cetane rating of 56 is a high-grade diesel fuel. The hydrocracked tail oil containing more than 14 m% hydrogen and mere 1.7m% aromatics could be used as a good feedstock for steam cracking process to produce ethylene.  相似文献   

10.
The CGP series FCC catalysts for manufacture of clean gasoline and propylene and the catalyst RSC-2006 for processing inferior residuum with high yield of light distillates are novel catalysts jointly developed by Qilu Catalyst Branch Company of SINOPEC Corp. and the Research Institute of Petroleum Processing (RIPP). The results of commercial application of these catalysts have revealed that they can satisfactorily meet the requirements for environmental protection, good economic benefits and capability for processing inferior FCC feed under new circumstances.  相似文献   

11.
为了调整产品结构、降低柴汽比、增加蒸汽裂解制乙烯原料(简称乙烯原料)的多样性,从而提高经济效益,中国石化石油化工科学研究院(简称石科院)开发了直馏柴油多产乙烯原料的加氢改质技术。中试研究结果表明,以直馏柴油为原料,采用石科院自主研发的专用催化剂,能够生产高链烷烃含量的柴油产品,可作为优质的乙烯原料。工业应用结果表明,采用该技术能够长周期稳定生产链烷烃质量分数55%以上的柴油产品作为优质乙烯原料,为炼油企业调整产品结构、向化工转型提供了技术支撑。  相似文献   

12.
中国石化安庆分公司2.0 Mt/a渣油加氢装置采用中国石化石油化工科学研究院(石科院)开发的RHT技术,具有第一反应器(R-101)可切出的工艺特点。第一周期和第二周期均采用石科院开发的第三代RHT系列渣油加氢催化剂以及相适应的催化剂级配技术。两个周期的工业应用结果表明:R-101切出工艺技术可行,催化剂级配技术合理。R-101切出后,对产品质量没有影响,产品质量完全满足下游催化裂化原料的要求;同时能够延长装置运行周期2~3个月,最大限度地发挥催化剂的活性。  相似文献   

13.
针对沿江炼油厂渣油加氢装置原料硫含量低、氮含量较高、金属Ni?V比高以及金属Fe和Ca含量高等特点,中国石化石油化工科学研究院提出了一系列解决方案:增设原油预脱钙措施,开发容垢能力更高的保护剂和残炭前身物加氢转化能力更强的催化剂,开发有针对性的催化剂级配技术,开发高效的反应物流分配技术,在部分炼油厂实施RICP工艺。工业应用结果表明,所开发的集成技术可充分发挥保护反应器的容垢能力和整体催化剂的活性,有利于沿江炼油厂渣油加氢装置的长周期运转。  相似文献   

14.
针对影响渣油加氢运行的主要因素,石油化工科学研究院提出了相应的解决方案:为延长装置运转周期,开发了更高活性和稳定性的催化剂以及更好原料适用性的催化剂级配技术;为发挥催化剂的整体性能,开发了高效的反应物流分配技术;为进一步延长装置运转周期,开发了保护反应器可切换的固定床渣油加氢技术。  相似文献   

15.
加氢催化剂系列的开发与进展   总被引:2,自引:0,他引:2  
石油化工科学研究院自1987年将RN-1加氢精制催化剂成功地用于工业装置以来,共开发了11个系列18种催化剂,其中14种催化剂获得工业应用,取得了良好的经济效益和社会效益,其技术水平达到国际先进水平.  相似文献   

16.
以5种不同的渣油为原料,从催化剂开发、催化剂级配、工艺条件优化、原料适应性考察等角度深入研究并开发了渣油深度加氢技术。结果表明:新开发的渣油深度加氢系列催化剂活性显著高于常规催化剂;反应温度是影响加氢深度最关键的因素;在优化的催化剂级配方案和工艺条件下,渣油深度加氢技术不仅可以显著提高原料中杂原子的脱除率,提高生成油的氢含量,还可以实现多烃类定向转化产化学品;高硫、低氮常压渣油更适宜采用渣油深度加氢技术生产优质催化裂解原料。  相似文献   

17.
原料的反应特性、反应器入口分配效果、催化剂体系及其级配技术会影响RHT渣油加氢装置的高效运行。原料的反应特性影响催化剂的杂原子脱除率和残炭前身物加氢转化性能,还会影响催化剂的失活机制和装置运转周期;反应器入口分配效果不佳会导致较高的床层径向温差;催化剂级配不合理会影响整体催化剂的活性和稳定性;渣油的分子大、黏度高,在催化剂中传质阻力大,扩散速度慢。针对这些影响RHT装置高效运行的主要因素,中国石化石油化工科学研究院结合基础研究和应用研究的结果,开发了相应的RHT系列技术,包括量体裁衣的RHT催化剂及级配技术、原油脱钙技术、反应器物流高效分配技术、可切除和可轮换的保护反应器工艺以及RICP系列工艺。根据RHT装置加工原料的特点以及全厂总流程的安排,针对不同的RHT装置提出了不同的整体解决方案。3套RHT装置的工业应用结果表明,实施整体解决方案后,RHT装置均实现了高效运行。  相似文献   

18.
原料的反应特性、反应器入口分配效果、催化剂体系及其级配技术会影响RHT渣油加氢装置的高效运行。原料的反应特性影响催化剂的杂原子脱除率和残炭前身物加氢转化性能,还会影响催化剂的失活机制和装置运转周期;反应器入口分配效果不佳会导致较高的床层径向温差;催化剂级配不合理会影响整体催化剂的活性和稳定性;渣油的分子大、黏度高,在催化剂中传质阻力大,扩散速度慢。针对这些影响RHT装置高效运行的主要因素,中国石化石油化工科学研究院结合基础研究和应用研究的结果,开发了相应的RHT系列技术,包括量体裁衣的RHT催化剂及级配技术、原油脱钙技术、反应器物流高效分配技术、可切除和可轮换的保护反应器工艺以及RICP系列工艺。根据RHT装置加工原料的特点以及全厂总流程的安排,针对不同的RHT装置提出了不同的整体解决方案。3套RHT装置的工业应用结果表明,实施整体解决方案后,RHT装置均实现了高效运行。  相似文献   

19.
影响固定床渣油加氢装置长周期运行的因素有其复杂性、系统性、规律性。不同类型原料的固定床渣油加氢反应特性不同,硫含量较低、氮含量较高的渣油原料的残炭前身物加氢反应与硫含量较高、氮含量较低的渣油原料相比相对较困难;原料中的Fe和Ca含量、工艺条件、反应物流分配及原料中减压渣油的比例也会影响固定床渣油加氢装置的运行周期。为了实现较长的运行周期,所采取的技术措施包括:开发与原料相适应的催化剂及催化剂级配技术;采用高效分配器;提高装置氢分压及增设反应器降低空速;开发保护反应器的相关技术;根据炼油厂类型及固定床渣油加氢装置配置具体情况选择合适的减压渣油掺入比例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号