首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamic mechanical analysis is performed on polybenzoxazines from acetylene-terminated benzoxazine monomers, and glass transition temperatures of these polybenzoxazines are found in the range of 329–368°C. It has been identified that the high glass transition temperature and high thermal stability are due to polymerization of the acetylene terminal group, in addition to oxazine ring polymerization through a comparison study with analogous polybenzoxazines that are obtained from monomers without an acetylene functional group. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 857–862, 1999  相似文献   

2.
动态力学分析在复合材料界面中的应用   总被引:3,自引:2,他引:3  
综述了动态力学分析用于纤维增强聚合物复合材料界面的有关理论以及在复合材料界面中的应用。  相似文献   

3.
Dynamic mechanical methods were used to study the effect of absorbed moisture on the properties of an epoxy resin matrix CFRP. The glass transition temperature (Tg)of the matrix resin, determined as the onset of the characteristic fall in dynamic modulus with increasing temperature, was found to decrease with increasing moisture content. Maximum shifts in Tg of 80 to 90°C, relative to the dry material, were observed for a resin moisture content of 5.2% by weight. The effects of sample geometry, fibre orientation, and frequency of oscillation, on the dynamic mechanical properties are discussed. Results are given of an analysis of the observed dependence of Tg on water content using two theoretical models.  相似文献   

4.
The preparation of filled two-component semi-interpenetrating polymer networks (semi-IPNs) is described and the results of an investigation of their morphology by means of dynamic mechanical spectroscopy are considered. The influence of an active dispersed filler (γ-Fe2O3) on the semi-IPNs phase structure is studied. A comparison is made between filled and unfilled semi-IPNs consisting of compatible or incompatible polymers. In the case of a semi-IPN of compatible polymers, the introduction of γ-Fe2O3 was observed to cause phase separation. With a two-phase semi-IPN the introduction of the filler enhanced the phase separation. The presence of two distinct peaks (the dynamic glass transition temperatures) corresponding to those of the two initial homopolymers shows the semi-IPN to have a two-phase structure.  相似文献   

5.
Dynamic mechanical properties and adhesive strengths of power feed copolymer and random copolymer synthesized using styrene or methyl methacrylate and n-butyl acrylate were investigated. Although the two systems were synthesized from the same raw materials, power feed copolymer had a very broad transition compared with random copolymer. This fact was explained by the fact that the system synthesized through power feed method was an alloy of copolymers which are a continuous series from monomer A rich copolymers to monomer B rich copolymers. The dynamic mechanical behavior of film cast from solution was almost the same as that of emulsion film, which indicated more extensive application of power feed copolymer. In the P(nBA/St) system, power feed copolymer maintained its adhesive strengths over a wide temperature range compared with random copolymer. The absolute value, however, was not so high. This was due to the low cohesive strengths of the films.  相似文献   

6.
采用动态热机械分析法详细考察了中温(125℃)固化氰酸酯树脂基体的温度-模量谱,研究了连续温度变化情况下促进剂用量、固化温度、环氧树脂、多官能氰酸酯对树脂基体的模量、损耗、玻璃化转变温度等使用性能的影响。促进剂的加入有效地提高了CE树脂中温固化反应程度和固化物的Tg,加入量在1.5phr时,改性CE树脂的弹性模量在150℃处显现出GPa量级波动,但仍呈玻璃态特征,表观Tg达238℃。提高固化温度,可使DMA曲线上的弹性模量波动消失,180℃固化后的Tg与中温固化的表观Tg相近。采用E-51环氧改性CE树脂,会显著降低树脂的耐热性。E-51用量在10份,Tg在233.5℃,用量到20份以上时,CE树脂的Tg急剧降低。酚醛型氰酸酯CY-5能有效地提高树脂的Tg,用量在20份时,Tg可达289℃。  相似文献   

7.
聚氨酯弹性体的动态力学性能的影响因素   总被引:4,自引:0,他引:4  
综述了聚氨酯弹性体动态力学性能的多种影响因素,讨论了软段类型(聚酯和聚醚)、软段相对分子质量、硬段类型(二异氰酸酯和扩链剂)、硬软段质量分数对PU弹性体动态力学性能的影响。在PU弹性体中,聚酯软段比聚醚软段的Tg高,弹性模量依PPG、PEG、PTMG软段顺序增加。  相似文献   

8.
Stresses which have been frozen into a polymer by cooling to below its glass transition temperature (Tg) are relieved when the polymer is reheated above its Tg. Polymers which have been elongated will contract above Tg. This sudden contraction just above Tg is detected as a sharp drop in the differential scanning calorimetric curve. This is the reverse of the well known superheating endotherm accompanying the expansion of annealed polymers. The decrease in the differential scanning calorimetric curve immediately after the Tg inflection can be quantitatively related to the residual strain in poly(vinyl chloride) and polycarbonate.  相似文献   

9.
风机叶片涂层微观结构与动态力学性能研究   总被引:1,自引:0,他引:1  
贾艳华 《中国涂料》2010,25(7):35-40
通过分析风机叶片工作环境特征和叶片基材结构破坏机理,研究风机叶片涂膜的主要性能需求。试验中通过动态力学分析(DMA)储存模量、损耗模量和玻璃化温度的变化与涂膜的宏观机械力学性能相结合,探讨了叶片涂层微观结构、理化性质和力学性能之间的关系。  相似文献   

10.
We have examined the effect of fibre addition on the glass transition temperature (Tg) of two epoxy resin systems (an amine cured and an anhydride cured epoxy system) using dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). The presence of fibres changes the glass transition temperature (Tg) of an anhydride cured epoxy resin but does not affect that of an amine cured epoxy. The data suggest that two counteracting mechanisms are responsible for these changes: firstly, the presence of fibres causes a restriction of the molecular motion in the resin system, and secondly, the presence of carboxyi and keto-enol groups on the fibre surface inhibit curing of the resin close to the fibre, i.e. in the interphase region. The former increases the Tg and is a long range effect whereas the latter decreases the Tg and is a localised phenomenon. Changes in the dynamic properties of the interphase region are only detected when the samples are loaded in the longitudinal direction and not in the transverse direction where bulk matrix properties dominate. Sizing the fibres before their incorporation into the epoxy resin eliminates the variation in interfacial properties arising from differences in fibre surface chemistry.  相似文献   

11.
We have examined the effect of fibre addition on the glass transition temperature (T g ) of two epoxy resin systems (an amine cured and an anhydride cured epoxy system) using dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). The presence of fibres changes the glass transition temperature (T g ) of an anhydride cured epoxy resin but does not affect that of an amine cured epoxy. The data suggest that two counteracting mechanisms are responsible for these changes: firstly, the presence of fibres causes a restriction of the molecular motion in the resin system, and secondly, the presence of carboxyi and keto-enol groups on the fibre surface inhibit curing of the resin close to the fibre, i.e. in the interphase region. The former increases the T g and is a long range effect whereas the latter decreases the T g and is a localised phenomenon. Changes in the dynamic properties of the interphase region are only detected when the samples are loaded in the longitudinal direction and not in the transverse direction where bulk matrix properties dominate. Sizing the fibres before their incorporation into the epoxy resin eliminates the variation in interfacial properties arising from differences in fibre surface chemistry.  相似文献   

12.
The electron beam-crosslinked and conductive carbon black-reinforced ethylene acrylic elastomer composites have been developed for various applications. The inter-connectivity of conductive carbon black agglomerates are clearly observed from the high-resolution transmission electron photo micrographs. The tensile strength of the composites has remarkably increased with increasing conductive carbon black loading up to 350 radiation dose. The dielectric permittivity (?′) and AC conductivity (σac) increase with an increase in conductive carbon black loading. The electron magnetic shielding interference of the developed composites has been measured using X-band frequency range, and the electron magnetic shielding interference increases with an increase in conductive carbon black loading.  相似文献   

13.
—Glass fiber/unsaturated polyester composites, prepared by impregnating glass braid with varying thickness coatings (from 200 Å up to 1600 Å thick) of polyester resin, were tested with a DuPont Dynamic Mechanical Analyzer. The effects of the polyester resin thickness and silane treatments on the dynamic mechanical properties of the composites were evaluated. The results are supported by Fourier transform infrared spectroscopy of the composite materials. It is shown that both the concentration and the organo-functional group of the silane coupling agent influence the damping, storage, and loss moduli as well as the glass transition temperature (Tg) of the matrix resin in the closest vicinity to the glass/resin bondline. In the absence of a silane inner layer, a low Tg, 'soft' boundary layer exists due to inhibition of the polyester resin cure by the glass surface. It is noted that a reactive silane, such as γ-methacryloxypropyltrimethoxysilane, promotes the formation of a 'soft' or 'rigid' (high Tg) boundary layer, depending on the concentration of the silane in the treating solution. On the other hand, a non-reactive silane, such as methyltrimethoxysilane, produces a 'rigid' interphase in the entire range of concentrations of the silane solution. An attempt was made to correlate the dynamic mechanical properties of the boundary layer with the fiber/polymer interfacial shear strength. Upon pretreatment of glass fibers with silane coupling agents, the relative magnitude of the loss modulus, E", and the nature of the boundary layer (Tg) seem to be better indicators of efficient stress transfer from the polymer to the glass fiber in the composite system than tan δ. Efficient stress transfer is characterized by a low value of E" and 'soft' boundary layers. The results suggest that the mere presence of glass/polyester chemical bonding is insufficient to ensure effective stress transfer. A strong bond results from the synergistic effect of glass/silane/polymer chemical bonding and a 'soft' boundary layer.  相似文献   

14.
Curved geometry in unidirectional CFRP (UD-CFRP) demands ideal shape optimization to attain superior performance while maintaining the desired high strength to weight ratio. Herein, the effect of graphene oxide (GO) as the potential filler to improve the mechanical and thermal properties of flat and curved specimens of UD-CFRP was investigated. The GO was synthesized using Hummer's method and introduced in the epoxy resin by wet transfer technique. Three-point and four-point bending analysis of UD-CFRP showed maximum flexural strength and modulus at 0.3 wt% GO addition in UD-CFRP. The improved interfacial adhesion of 0.3 wt% GO incorporated UD-CFRP was realized by calculating storage modulus, reinforcement efficiency factor (r), C-factor, adhesion factor, cross-linking density, and glass transition temperature (Tg) from dynamic mechanical analyzer. Fracture analysis by scanning electron microscope showed the superior interlocking in carbon fiber, and epoxy polymer at 0.3 wt% GO addition.  相似文献   

15.
Power feed copolymers were synthesized using styrene and n-butyl acrylate through non-uniform feeding emulsion polymerization. Poly(vinyl alcohol) (PVA) was used as a protective colloid, onto which vinyl monomers were grafted. Power feed copolymer had a very broad glass transition temperature compared with random copolymer, even if grafting and/or crosslinking were introduced to the system. This tendency was almost the same as the non-grafted power feed copolymer where only low molecular weight surfactant was used.

Adhesive joint strengths of power feed copolymers were evaluated compared with random copolymers. In the case of usual linear power feed copolymer, the adhesive joint strengths were not higher than those of random copolymer, which was considered to be due to the lower film strengths of the power feed copolymer. Power feed copolymer having grafting showed slightly higher adhesive joint strengths over a wide range of temperatures than random copolymer. When crosslinking was introduced to the system, power feed copolymer showed much higher adhesive joint strengths over a wide temperature range.  相似文献   

16.
Dynamic mechanical analysis (DMA) was used to investigate the thermomechanical behavior and the effects of postcuring on a range of glass-reinforced phenolics. The materials examined were a pure resol (reinforced with S- and E-glass), a pure novolac (reinforced with S-glass), and three derivatives of the resol and/or novolac: a resol/novolac blend, a phenolic–furan graft copolymer, and a rubber-modified resol (all reinforced with S-glass). The blend and copolymer were prepared to obtain phenolic resins with improved impact strength, without degeneration of their high-temperature performance. They have a more loosely crosslinked structure compared to the pure resol or novolac. The rubber-modified resol was prepared with the intention of reducing the brittleness of the resin structure by incorporating an elastomeric phase within the resol resin matrix. It was found that the stiffness and glass transition temperature (Tg) of the materials could be increased by postcuring, which also produced a decrease in their damping capacity. Knowing that the postcure process is a function of time and temperature, a master curve was constructed that allowed prediction of the Tg of the resol/novolac blend over a broad range of postcure times and temperatures. The effect of frequency on the storage modulus of the pure resol (S-glass), copolymer, and blend was also studied from 0.01 to 100 Hz. Master curves were constructed by time–temperature superpositioning that allowed prediction of the storage modulus at times and temperatures that are not experimentally accessible. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 649–658, 1999  相似文献   

17.
Results of the dynamic mechanical behavior of atactic polystyrene (PS) and high‐impact polystyrene (HIPS) for temperatures between 300 and 425 K at a frequency of the order of 50 kHz are presented. The storage Young's modulus, (E′), of the HIPS is lower than the PS value, being the relationship between them a function of the rubber phase volume fraction, independent of the measurement frequency. The glass transition temperature (Tg) of HIPS is shifted to lower temperature in respect to the PS. The γ relaxation appears at 308 K in PS at 50 kHz, while it seems to move toward lower temperatures in the HIPS. Both shifts are attributed to the presence of mineral oils in the HIPS. The values of E′, Tg, and the temperature of the γ relaxation at 50 kHz are discussed within the scope of the theory of viscoelasticity. Finally, the effect of thermal treatments, using different annealing times, on the behavior of both materials is shown. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 865–873, 2000  相似文献   

18.
Power feed copolymers were synthesized using styrene and n-butyl acrylate through non-uniform feeding emulsion polymerization. Poly(vinyl alcohol) (PVA) was used as a protective colloid, onto which vinyl monomers were grafted. Power feed copolymer had a very broad glass transition temperature compared with random copolymer, even if grafting and/or crosslinking were introduced to the system. This tendency was almost the same as the non-grafted power feed copolymer where only low molecular weight surfactant was used.

Adhesive joint strengths of power feed copolymers were evaluated compared with random copolymers. In the case of usual linear power feed copolymer, the adhesive joint strengths were not higher than those of random copolymer, which was considered to be due to the lower film strengths of the power feed copolymer. Power feed copolymer having grafting showed slightly higher adhesive joint strengths over a wide range of temperatures than random copolymer. When crosslinking was introduced to the system, power feed copolymer showed much higher adhesive joint strengths over a wide temperature range.  相似文献   

19.
设计玻璃组成及晶化工艺提高Li2O-Al2O3-SiO2微晶玻璃的强度是当前亟需解决的问题。本文通过熔融浇铸法制备了具有特定组成的Li2O-Al2O3-SiO2玻璃,通过两步热处理方法制备了高强度半透光微晶玻璃。差示扫描热分析结果显示玻璃的转变温度为532 ℃,且有多个析晶峰。热处理后,X射线衍射证明了玻璃中析出以Li2Si2O5、LiAlSi3O8、LiAlSi4O10为主晶相的晶体,且随着热处理温度的上升或时间延长,透锂长石逐渐转变为锂辉石晶相,晶粒尺寸也从70 nm(热处理条件为:750 ℃,0.5 h和780 ℃,10 h)生长至340 nm(热处理条件为:820 ℃,0.5 h和850 ℃,4 h),微晶玻璃从半透光转变为完全乳浊。微晶玻璃具有优异的机械性能,维氏硬度最大可达9.15 GPa,环上环的最大负载可达1 335 N,最大整机跌落高度可达162 cm。此微晶玻璃可用于手机等电子器件的背板保护玻璃。  相似文献   

20.
以聚酯多元醇为基的聚氨酯弹性体的动态力学性能研究   总被引:4,自引:0,他引:4  
合成了以聚酯多元醇为基的聚氨酯弹性体(PUE),研究了聚酯多元醇结构及相对分子质量、扩链剂类型及用量等因素对聚氨酯弹性体的动态力学性能的影响。结果表明:以相对分子质量为2000及3000的聚酯多元醇制得的PUE中存在明显的相分离;当扩链剂中带有苯环结构时,PUE的玻璃化转变温度(Tg)升高,储能模量增加,阻尼因子下降;PUE的Tg及储能模量随着扩链剂L-MOCA用量的增加线性升高,阻尼因子线性下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号