首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of microwave processing on the chemical interactions occurring between the carbon fiber surface and the epoxy matrix constituents was investigated using X-ray Photoelectron Spectroscopy (XPS). Monofunctional model compounds selected to duplicate the matrix constituents were exposed to the carbon fibers at temperatures similar to those encountered during composite processing. After solvent extraction, chemisorbed species were quantified by XPS. Differences were apparent in the C 1s and O 1s core electron regions of the microwave treated samples when referenced to the same elemental regions of thermally (convection) treated samples. Specifically, the atomic percentage of oxygen (in the form of carbon oxides) was increased to a greater degree when using the microwave treatment as opposed to the thermal treatments. The microwave treatment resulted in a substantial increase in the amount of chemical interaction between the fiber surface and the epoxy resin and amine components of the matrix. An epoxy resin/amine hardener adduct compound was also used to investigate the possible interaction of the adduct hydroxyl group with the carbon fiber surface. XPS results indicate a low to insignificant interaction of the hydroxyl with the carbon fiber surface under the conditions used in this study.  相似文献   

2.
IM7 carbon fibers were surface treated in methane, ethylene, trifluoromethane and tetrafluoromethane plasmas. The surface chemical composition of the fibers was determined by X-ray photoelectron spectroscopy (XPS). The adhesion between as-received and plasma-treated carbon fibers and polyethersulfone (PES) and an epoxy resin was measured by the microbond pull-out test. XPS showed that the methane and ethylene plasmas deposited a thin layer of hydrocarbon on the fiber surface. The trifluoromethane plasma deposited a layer of fluorocarbon on the surface of the fibers. The tetrafluoromethane plasma etched the fibers and introduced a significant amount of fluorine on the surface. The microbond pull-out test results indicated that an etching plasma, such as the tetrafluoromethane plasma, improved the adhesion between carbon fibers and PES. These results are consistent with earlier work performed with ammonia plasma. The adhesion is believed to be due primarily to the differential thermal shrinkage between the fiber and the matrix. It was shown that in the case of a reactive matrix such as an epoxy resin, the fiber chemical composition plays a role in the fiber-matrix adhesion. However, this chemical effect is secondary to the cleaning effect of the surface treatment.  相似文献   

3.
The adhesion between carbon fibers and bismaleimide resins was evaluated using the microbond single fiber pull-out test. A commercially-available, methylene dianiline-based bismaleimide resin and a novel phosphorus-containing bismaleimide were tested with as-received and plasma-treated polyacrylonitrile-based carbon fibers. The surface chemical composition, topography, tensile strength, and surface free energy of the carbon fibers were studied using x-ray photoelectron spectroscopy, scanning electron microscopy, single fiber tensile tests, and dynamic contact angle analysis. The carbon fiber-bismaleimide adhesion improved when the carbon fiber received an oxidative commercial surface treatment or was exposed to an air or ammonia plasma prior to bonding.  相似文献   

4.
The adhesion between carbon fibers and bismaleimide resins was evaluated using the microbond single fiber pull-out test. A commercially-available, methylene dianiline-based bismaleimide resin and a novel phosphorus-containing bismaleimide were tested with as-received and plasma-treated polyacrylonitrile-based carbon fibers. The surface chemical composition, topography, tensile strength, and surface free energy of the carbon fibers were studied using x-ray photoelectron spectroscopy, scanning electron microscopy, single fiber tensile tests, and dynamic contact angle analysis. The carbon fiber-bismaleimide adhesion improved when the carbon fiber received an oxidative commercial surface treatment or was exposed to an air or ammonia plasma prior to bonding.  相似文献   

5.
The surface chemistry of IM7 carbon fibers was characterized by x-ray photoelectron spectroscopy (XPS). The fiber surface energetics were determined from a two-liquid tensiometric method. The adhesion between as-received and plasma-treated carbon fibers and polyethersulfone (PES) was measured by the microbond pull-out test.

The surface characterization techniques showed that the effect of any plasma treatment is attained within less than 15 seconds. It was found that both argon and air plasmas increased the oxidation state of the fiber surface and that they reduced the dispersive component (γs d) of the fiber surface free energy considerably. The ammonia plasma treatment resulted in a cleaning of the surface. This plasma treatment was also effective in improving the fiber/matrix adhesion of quenched samples. A similar adhesion enhancement between as-received fibers and PES is obtained by annealing the samples above the Tg of the polymer. The air plasma treatment did not have any significant effect on the fiber/matrix adhesion.  相似文献   

6.
The surface chemistry of IM7 carbon fibers was characterized by x-ray photoelectron spectroscopy (XPS). The fiber surface energetics were determined from a two-liquid tensiometric method. The adhesion between as-received and plasma-treated carbon fibers and polyethersulfone (PES) was measured by the microbond pull-out test.

The surface characterization techniques showed that the effect of any plasma treatment is attained within less than 15 seconds. It was found that both argon and air plasmas increased the oxidation state of the fiber surface and that they reduced the dispersive component (γsd) of the fiber surface free energy considerably. The ammonia plasma treatment resulted in a cleaning of the surface. This plasma treatment was also effective in improving the fiber/matrix adhesion of quenched samples. A similar adhesion enhancement between as-received fibers and PES is obtained by annealing the samples above the Tg of the polymer. The air plasma treatment did not have any significant effect on the fiber/matrix adhesion.  相似文献   

7.
Because the structure and the chemical composition of the interface can have a large effect on the adhesion properties of polymeric materials to metallic surfaces, many investigations have concentrated on the study of the interphase region. However, the complexity of the materials often leads to the use of model compounds to mimic the interfacial reaction. We have presented a critical discussion of three different approaches which have been used to understand the adhesion mechanism at amine-cured epoxy/aluminium interfaces: i) fracture of “real world” joints; ii) deposition of model (amino-alcohol) molecules on “real world” substrates; i) deposition of model (amino-alcohol) molecules on clean, oxidised and hydroxylated Al (100) surfaces. We have shown that model compounds can adequately duplicate the interface chemistry observed in “real world” joints. However, a detailed understanding of the exact nature of the interactions and of the role of the different reactive sites can only be achieved through studies performed on a model surface under controlled ultrahigh vacuum conditions.  相似文献   

8.
Aluminum plates (type 2024) were subjected to various surface pretreatments and then joined by epoxy resin. The joints were tested for shear strength close to the time of joining, and after various storage periods at 25±5°C and 40% relative humidity. Surfaces of the aluminum plates were examined using X-ray photoelectron spectroscopy, and scanning electron and optical microscopies. Specimens examined shortly after being joined showed a trend of cohesive failure, but those which were stored for some time showed a trend of adhesive failure. It was found that the mean shear strength (MSS) of the specimens treated by a chromic acid solution was lower than that of specimens treated by a phosphoric acid solution. Hardness (Shore type D-2) and structure (by X-ray diffraction) of epoxy control samples were also examined. It was observed that the hardness increases with longer aging time, while changes in the structure were observed after long-term storage (63 months). The failure development with time is discussed and correlated with the MSS and the failure mode.  相似文献   

9.
The surface free energy (γs) of modified carbon fibers was determined by tensiometry and effects of CF4-O2 plasma treatment were evaluated. The treatment with the gas mixture in which oxygen was above 40% accelerated preferentially the oxidation of fiber surfaces and the nondispersive component of the surface free energy, γPS, increased to about three times that of the untreated fiber. On the other hand, the treatment with the gas containing CF4 above 80% induced fluorination and surface species such as - CF, - CF2, or - CF3 were formed. The γPS values decreased to almost zero and the dispersive component became about 18 mJ/m2. The calculated work of adhesion between various fibers and the epoxy resin was well correlated with the interfacial shear strength of the composites formed with these materials.  相似文献   

10.
11.
This paper presents the effects of immersion on the adhesion behavior in a polyamide-cured epoxy system immersed in sodium chloride electrolyte adjusted to three different pH values. The strength of lap shear joints was measured before and after exposure and after redrying. The failure locus was determined on a macroscopic and microscopic level. It was found that a large adhesion loss occurred upon immersion. Most of that loss was recovered upon redrying. All of the breaking force was recovered when the immersion fluid was distilled water. The locus of failure was primarily through the bulk of the adhesive before immersion. After immersion the failure was interfacial with a thin residue of polymer remaining on the metal surface. These results are discussed with respect to earlier work on the water absorption properties of the system.  相似文献   

12.
This paper presents the effects of immersion on the adhesion behavior in a polyamide-cured epoxy system immersed in sodium chloride electrolyte adjusted to three different pH values. The strength of lap shear joints was measured before and after exposure and after redrying. The failure locus was determined on a macroscopic and microscopic level. It was found that a large adhesion loss occurred upon immersion. Most of that loss was recovered upon redrying. All of the breaking force was recovered when the immersion fluid was distilled water. The locus of failure was primarily through the bulk of the adhesive before immersion. After immersion the failure was interfacial with a thin residue of polymer remaining on the metal surface. These results are discussed with respect to earlier work on the water absorption properties of the system.  相似文献   

13.
Abstract

In this paper we show that current abrasion surface preparation practices do not perform equally on all composite surfaces. The effect of abrasion on the adhesive bond strength of various carbon fiber (CF) composites was investigated. Cyanate ester composites were fabricated using a low, a high and an ultra high modulus carbon fiber (T300, M55J, K13C2U). XPS and contact angle measurements showed that the surface energy of all three composites increased due to the removal of contaminants as well as increased in surface roughness. However, the lap shear strength degraded sharply for a number of cases, irrespective of roughness, depending on the fiber used. Composites utilizing lower modulus carbon fibers increased in adhesive bond strength following abrasion in comparison to composites with higher modulus fibers. As the modulus of the fiber and the abrasive grit size increased, the degree of degradation caused by abrasion was shown to increase significantly. Scanning electron microscopy (SEM) and profilometry measurements showed the development of an abrasion-affected zone that was especially prevalent for higher stiffness composites. The failures for the higher modulus specimens were caused by subsurface damage located a few fiber diameters below the abraded surface. However, an alternate technique using atmospheric plasma surface treatment exhibited efficient removal of contaminants while showing no degradation of bond quality when treating these ultra high modulus composites.  相似文献   

14.
Type II, PAN-based carbon fibers (unsized and commercially treated) have been exposed to nitric acid and oxygen plasma individually and also to combined nitric acid/oxygen plasma treatments and the surface compositions have been determined using angle-resolved X-ray photoelectron spectroscopy (ARXPS) and ion scattering spectroscopy (ISS). Most of the oxygen on the as-received carbon fibers resides within the outermost 10-15 Å of the surface. Fiber exposure to nitric acid at 115°C for 20-90 min enhances the oxygen surface concentration to a point of saturation and the oxygen depth distribution is increased and becomes more uniform within the maximum XPS sampling depth (~60-100 Å). In addition, the fiber surface area is believed to be increased. After treating fibers to various degrees in nitric acid, subsequent exposure to oxygen plasma yields an additional increase in the surface oxygen content, particularly in the outermost fiber layers (10-15 Å). Under the conditions of the investigation, the maximum amount of surface oxidation occurs after sequential fiber exposure to nitric acid at 25°C for 30 s and oxygen plasma. As the extent of initial nitric acid treatment is increased, the synergism with subsequent plasma oxidation decreases, and the oxygen concentration becomes more uniform within the outer layers of the oxidized fibers. Overall, the data are consistent with a proposed oxidation mechanism in which oxygen plasma acts to enhance the surface density of oxygen on roughened and pitted nitric acid-oxidized fiber surfaces. As the duration of nitric acid exposure is increased, it is hypothesized that subsequent exposure to oxygen plasma smoothes the fiber surfaces but the surface density of oxygen remains essentially constant.  相似文献   

15.
微波辐射促进化学反应是近几十年来兴起的一项新技术。本文介绍了微波辐射促进化学反应的机理与特点,微波合成反应技术,着重综述了微波新技术在林产品加工中的应用研究。  相似文献   

16.
Films of polytetrafluoroethylene (PTFE) and perfluorinated copolymers (PFA and FEP), with a range of fabrication histories, were exposed to sodium naphthalenide (Na/naphth) etchant so as to defluorinate the surface for improved wettability, and hence adhesion. The depth of defluorination was measured gravimetrically and the nature of the chemical functionalities determined spectroscopically. For smooth films, the fluoropolymer type and crystallinity had little effect on the defluorination process. Surface area was the major variable affecting defluorination rate, although the presence of surface defects and deformation in skived films also increased the rate of defluorination. For all but the skived PTFE, there was little change in surface texture either after defluorination or subsequent stripping of the defluorinated layer by an acid etch. Acid stripping of the defluorinated layer on skived PTFE left a porous surface texture. The chemical nature of the surface could be changed by modifying the post-etch treatment of the specimen, for example by modifying the rinse procedure and the storage history of the specimen before the adhesive bond is made.  相似文献   

17.
The effects of surface preparation and sterilization treatments of cpTi on in vitro osteoblast cell attachment were investigated. Surface characterization by XPS and AES and determination of wetting angles indicated that sterilization by exposure to ultraviolet light or gamma irradiation resulted in highly energetic, relatively contaminant-free cpTi surfaces which supported high levels of osteoblast cell attachment. Steam autoclaving, however, resulted in relatively low energy surfaces with high levels of O-C-and N-containing contaminants. Other inorganic contaminants were also detected on the surface of selected samples. As a result, steam-autoclaved surfaces supported significantly lower levels of cell attachment. At 2 hours after initial attachment, the osteoblast cells failed to spread and integrate onto the surfaces sterilized by steam autoclaving. These results confirm previous studies regarding the contamination resulting from steam autoclaving and indicate that non-contaminating sterilization procedures should be employed for the sterilization of commercial metallic implant materials.  相似文献   

18.
The effect of reducing adhesion force by coating with a metal-containing diamond-like carbon (DLC) film has been studied by recording force–displacement curves with an atomic force microscope. A flat tip, a spherical tip, and some sharp tips were applied to mimic the different contact geometries. The results show that both under ambient conditions and in dry nitrogen, the DLC film can effectively reduce the adhesion force for different contact geometries. The reduction of the adhesion force was attributed to the decrease of the surface free energy and the increase of the contact angle for water. The reduction ratio of adhesion is closely related to contact geometry, the roughness of DLC film, material characteristics paired with DLC film and the environment. These factors are mutually coupled to determine the final reduction ratio. Under both conditions, the DLC film also plays a role in reducing the wear and tear when measuring the adhesion forces.  相似文献   

19.
High incident energy hydrogen and/or oxygen cations are generated by electron cyclotron resonance system, and then used to highly efficiently modify multi-walled carbon nanotubes (MWCNTs). The effects of various H2/O2 gas compositions on the modification process are studied. A systematic characterization method utilizing a combination of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, Raman spectroscopy, and thermogravimetric analysis (TGA) is used to evaluate the effects of various H2/O2 gas compositions on MWCNT functionalization. The Raman results show that the I D/I G ratio is directly affected by H2 concentration in gas mixture, and the treatment applying a H2/O2 gas mixture with ratio of 40/10 (sccm/sccm) can yield the nanotubes with the highest I D/I G ratio (1.27). The XPS results suggest that the gas mixture with ratio of 25/25 (sccm/sccm) is most effective in introducing oxygen-containing functional groups and reducing amorphous carbon. The TGA suggests that the structural change of the treated nanotubes is marginal by this method with any gas condition.  相似文献   

20.
The effect of conditioning dentin was investigated using ethyleneglycol bis(aminoethylether) tetraacetic acid (EGTA) and three proprietary agents containing ethylenediamine tetraacetic acid (EDTA), maleic acid and dipentaerythritol pentaacrylate phsophoric acid ester (PENTA). Ground dentin was treated with EGTA or one of the three proprietary agents. After adhering composite resin to treated surfaces, the shear bond strength (SBS) was determined with and without thermal stress. Scanning electron and atomic force microscopies were used to assess morphological effects of each of the agents, while low resolution X-ray photoelectron spectroscopy (XPS) was employed to evaluate elemental changes due to treatment. Mean bond strength was greatest for the PENTA-conditioned surfaces. EDTA and maleic acid demineralized the dentin surface while the agent containing PENTA produced an adherent surface film. The XPS survey showed a reduction in Ca and an increase in N for agents containing EGTA, EDTA and maleic acid, while a simultaneous reduction in both these species was observed for PENTA. EGTA did not improve adhesion for systems which were based on smear layer removal and substrate demineralization. For the PENTA-based system, which relied on the development of a molecular overlayer, EGTA degraded bond strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号