首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The paper presents selected aspects of the effect of primers on adhesive properties and strength of aluminium sheet adhesive joints, made using polyurethane adhesives. The strength of adhesive joints was determined based on two cure time variants: 15 and 64 h. It was found that the longer cure time at a humidity of 33% is more desired, as it leads to a substantial increase in strength of the tested adhesive joints. In addition, two variants of surface preparation were applied: degreasing and degreasing followed by the application of a primer (a pro-adhesive agent). It was observed that the primer application prior to the application of an adhesive leads to a significant increase in strength compared to the variant where the adhesive application is preceded only by degreasing. Moreover, the aluminium sheet surface that was subjected to cataphoretic painting and priming exhibits better adhesive properties. It has a higher value of both surface free energy and its dispersion and polar components compared to the surface that was only subjected to degreasing.  相似文献   

2.
Epoxy asphalt adhesive (EAA) is a thermosetting polymer modified asphalt that has been widely applied on steel bridge decks as a strong adhesive and waterproof layers. In this study, the influence of the asphalt penetration grade on the viscosity, damping and mechanical properties, bond strength, and microstructures of EAAs was investigated. The viscosity of the EAAs increased with increasing asphalt penetration grade. The presence of base asphalt increased the glass-transition temperature (T g) of the neat epoxy. The asphalt penetration grade had a negligible effect on the T g values of the EAAs. The existence of base asphalt improved the damping behaviors of the neat epoxy. Moreover, the damping properties of the EAAs increased with increasing asphalt penetration grade. The tensile strength, elongation at break, and bond strength values of the EAAs increased with increasing asphalt penetration grade. The bond strengths of the EAAs were 7- to 10-fold higher than that of the neat asphalt. The asphalt penetration grade had a negligible effect on the bond strengths of the EAAs. Morphological observations revealed that the average size of the dispersed asphalt particles in the epoxy decreased with increasing asphalt penetration grade. A more homogeneous phase separation was formed in the EAA with a higher penetration-grade asphalt. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47027.  相似文献   

3.
Most adhesively bonded joints exhibit adhesive or cohesive failure, i.e. failure at the adhesive/adherend interface or within the adhesive, respectively. The main objective of this study is to investigate the effect of surface modification of the metal substrate accompanied by modification of the adhesive properties on the strength and failure mechanism of bonded joints. A 5061 aluminium alloy has been used as the metal substrate onto which two types of surface treatments were applied; chemical surface modification and gritblasting. A standard epoxy resin was used as the adhesive medium, in which multi-wall carbon nanotubes (MWCNTs) were dispersed, with a range of weight fraction content (from 0.03% to 0.5%). The resin was fully characterised by mechanical testing in order to determine the optimum weight fraction to enhance its properties. Aluminium to aluminium and glass fibre reinforced polymer (GFRP) composite to aluminium single lap joints bonded with either pure epoxy resin or MWCNT reinforced epoxy resin were subsequently manufactured and tested. The tests show a moderate increase of the joint strength when MWCNTs are added into the adhesive with the failure mechanism changing from cohesive to adhesive. In addition, the comparison between different surface preparation methods shows that gritblasting results in considerably improved adhesive strength over chemical treatment.  相似文献   

4.
In this experimental study, lap shear strength and electrical conductivity of nanohybrid adhesives containing multi-walled carbon nanotubes (MWCNT) and silver (Ag) nanoparticles were investigated. Ag nanoparticles were produced via arc-discharge method in liquid nitrogen. For characterizing the Ag nanoparticles, X-ray diffraction analysis, transmission electron microscopy, and scanning electron microscopy (SEM) were performed. Tensile lap shear properties were determined in accordance with ASTM D 1002-10 standard. Mechanical and the electrical properties of nanohybrid adhesives were compared with neat epoxy adhesive. The best electrical conductivity of nanohybrid adhesive was obtained for the 1% wt MWCNT-2% wt Ag-contained sample. However, the samples which contain 0.5% wt. MWCNT–0.5% wt. Ag nanoparticles reached the highest lap shear strength. The results showed that Ag nanoparticles enhance the conductivity in the presence of MWCNT. It is concluded that the MWCNT act as conductivity bridges among epoxy adhesive and facilitate the electron transfer. As seen in the tensile test results, the ductility of the adhesive was improved by adding the nanoparticles in to the epoxy resin.  相似文献   

5.
A method for improving the mechanical behavior of adhesive joints is embedding metal macrofibers to the adhesive layer. The effect of the orientation of metal macrofibers laid across the length and width of the joint (longitudinal and transversal directions) on the strength and elongation at failure of single lap joints (SLJs) was investigated experimentally by testing SLJs reinforced with metal macrofibers laid in different orientations. The experimental results indicated that increasing the number of metal macrofibers in the longitudinal direction improved the shear strength and elongation at failure of SLJs. However, the improvements were found to be dependent on the normalized horizontal distance between the metal macrofibers for which a proper value of 1 was determined. While embedding metal macrofibers in the transversal direction degraded the mechanical properties of SLJs. Finite element analyses were undertaken to investigate the effects of fibers orientation and horizontal distance on the adhesive peel and shear stress distributions. The results revealed that decreasing the horizontal distance between the metal macrofibers laid in the longitudinal direction decreased the adhesive shear stress values indicating improvement of the joint strength, while in SLJs reinforced with metal macrofibers laid in the transversal direction decreasing the fibers distance increased the adhesive peel stress values resulting in joint strength reduction.  相似文献   

6.
Three approaches were employed to improve the flow and sandwich bonding properties of a nylon-carrier supported film adhesive based on carboxyl terminated butadiene acrylonitrile (CTBN)-modified novolac epoxy resin. These included the addition of a commercial acrylate flow modifier, replacement of novolac epoxy partly with solid diglycidyl ether of bisphenol A (DGEBA) resins, and replacement of CTBN partly with an epoxy functional acrylate terpolymer (EPOBAN). Adhesive properties such as lap shear strength (LSS), T-peel strength (TPS) and flatwise tensile strength (FTS) on honeycomb core bonded sandwich specimens were evaluated using aluminium adherends. The addition of the flow modifier in low concentrations enhanced the flexibility of the system and resulted in a marginal increase in LSS, TPS and FTS. Replacing novolac epoxy partly with solid DGEBA resulted in a less brittle system with enhanced LSS and TPS, but with reduced FTS due to the decreased flow characteristics. A substantial increase in FTS was observed when CTBN was partly replaced with EPOBAN. The introduction of EPOBAN resulted in good flow and fillet properties and the optimum FTS was obtained for the composition based on 25/75 CTBN/EPOBAN ratio. Mechanical properties of selected systems were also studied in addition to adhesive properties.  相似文献   

7.
The detrimental effects of a humid environment on the mechanical properties of adhesives have been investigated for many years. However, from early studies to recent contributions most of the interest has been focused on the reduction of strength related to plasticity associated with moisture uptake, interfacial weakening, etc. Much less attention has been paid to variations of elastic constants, which influence both the stiffness of the joint and the distribution of stresses. The goal of this study was to measure the effects of a humid and warm environment on tensile strength, Young's modulus and Poisson's ratio of a two-component epoxy adhesive, Henkel Hysol 3425. The measurements have been carried out on bulk specimens of dogbone shape, instrumented with two-grid (axial/transverse) strain gauge rosettes and tested in tension. The conditions of exposure, generated in a climatic cabinet, were 100% relative humidity and 50?°C. To relate the exposure time to the moisture uptake, the weight of the specimens was monitored. It has been noticed that most of the water uptake occurs in the first week of exposure; however, at progressively slower rate, the phenomenon is noticeable almost until the fourth week and then saturation is achieved. Over the same period, the mechanical properties decay as moisture uptake continues; at the end, the loss in strength is about 75% whilst for the elastic moduli the loss is approximately 20%. No clear evidence is found about the Poisson's ratio, which exhibits a non-monotonic behaviour: stable in the early weeks, then increasing and decreasing of a few per cent. In accord with previous works, the behaviour of the mechanical properties seems to be governed by the amount of moisture uptake.  相似文献   

8.
This paper presents a study on the effect of surface treatments on the mechanical behavior of adhesively bonded titanium alloy joints. Several different treatments were selected for the preparation of Ti-6Al-4V alloy faying surfaces, and bonded joints were fabricated using surface-treated titanium alloy substrates and a film adhesive. Tensile tests were performed on single-lap specimens to evaluate the joint strength and to assess the failure mode, i.e. cohesive failure, adhesive (interfacial) failure or a mix of both. Contact angle measurements were also carried out, and the surface free energies of titanium alloys and the thermodynamic works of adhesion for the adhesive/titanium alloy interfaces were obtained. A three-dimensional finite element analysis was used to predict the strength of the specimens exhibiting cohesive failure. In addition, an expression of the relationship between the joint strength corresponding to interfacial failure and the thermodynamic work of adhesion was introduced based on the cohesive zone model (CZM) concept. It is shown that two surface treatments, Itro treatment and Laseridge, lead to cohesive failure and a significant increase in the joint strength, and the numerically predicted strength values are fairly close to the experimental values. These surface treatments are possible replacements for the traditional surface treatment processes. For degreasing, emery paper abrasion, atmospheric plasma treatment, sulfuric acid anodizing, nano adhesion technology and high-power lasershot, the specimens fail at the adhesive/substrate interface and the joint strength increases linearly with the thermodynamic work of adhesion as expected from our CZM-based expression.  相似文献   

9.
The effects of post-curing and cure temperature on the glass transition temperature, T g, and the mechanical properties of epoxy adhesives were studied. T g was measured by a dynamic mechanical analysis apparatus developed in-house and the mechanical properties of the adhesives (yield strength, Young’s modulus and failure strain) were measured by a tensile machine. The relationships between T g and mechanical performance under various post-cure conditions were investigated. The curing process was the same for all tests, consisting of an initial stage performed at different temperatures followed by cooling at room temperature. Three sets of specimens were considered, sharing the same initial cure process, but with a different post-curing procedure. In the first set, the specimens were only subjected to a curing process; in the second set, the specimens were subjected to a curing process followed by a post-cure performed at a temperature below the T g of the fully cured network, T g∞; and in the third set, the specimens were subjected to a curing process followed by a post-cure performed at a temperature above the T g∞. When post-cured at a temperature above T g∞, the mechanical and physical properties tend to have a constant value for any cure temperature.  相似文献   

10.
采用羟基磷灰石(HA)对环氧树脂结构胶进行改性。对改性后结构胶的力学性能进行测试。实验表明:随着HA的掺量增加,环氧结构胶的压缩强度、冲击强度、粘钢剪切强度提高、拉伸强度略有降低;当羟基磷灰石的掺量为5%时。环氧树脂结构胶的压缩强度、冲击强度分别为92MPa、6.8kJ/m2,比纯环氧树脂基体提高28%和70%;当羟基磷灰石的掺量为7%时,环氧树脂结构胶的粘钢剪切强度为26.4MPa.比纯环氧树脂基体提高55%,羟基磷灰石对环氧树脂有较好的增强增韧作用。  相似文献   

11.
Graphene oxide (GO) is prepared and introduced into epoxy resins through a wet-transfer migration technique using a three-roll mill. The results of TEM, XRD and digital microscope observation show that good dispersion of GO is achieved without using any additives. The mechanical and thermal properties of GO/epoxy (GO/EP) adhesives are enhanced with GO incorporated. A 10.2% increase in Young's modulus and a 56.3% increase in elevated-temperature (120 °C) lap shear strength (LSS) was observed on addition of 1.0 wt% GO, compared to the neat epoxy adhesive. Increased glass transition temperature and improved thermal stability of the GO/EP adhesives are also observed in the DMA and TG analysis. Moreover, the toughness of the GO/EP adhesives is improved and much rougher fracture surface can be observed compared with the neat epoxy adhesive. No GO agglomeration can be observed in the SEM images of GO/EP adhesive with 1.0 wt% loading.  相似文献   

12.
The effective mechanical properties of a polyurethane adhesive (oligoetherdiol, ‐triol, MDI) in gold joints (bond line thickness, dP = 35–550 µm) are studied in the linear deformation range by dynamic mechanical analysis in shear mode. These properties depend on dP: thin ones possess a higher dynamic glass transition temperature and show a narrower glass transition than the thick ones. The storage modulus rises with decreasing dP for the rubbery plateau. The results attest mechanical interphases in the polyurethane with increased crosslink density and reduced cooperative mobility than in bulk. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42058.  相似文献   

13.
A structural adhesive from I.C.R., X07 Extreme®, was fully characterised through tensile test, static and dynamic lap-shear strength test, cleavage peel test and DSC. Lap-shear tests were performed by using either aluminium, stainless steel and glass fibre reinforced polymer as substrate and after aging the specimen under extreme environmental conditions. The performance of this novel adhesive was compared to that of a structural adhesive of a competitor. The work summarises the typical procedures intended for the qualification of a structural adhesive for marine joints.  相似文献   

14.
The ball‐milling/liquid‐phase oxidation (BMLPO) method was used to fabricate surface‐modified short carbon fibers (SCFs). Multiscale epoxy composites reinforced with a combination of SCFs and multiwalled carbon nanotubes (MWNTs) were prepared. Atomic force microscopy observations and contact angle measurement were used to investigate the modification effect of the BMLPO method. Mechanical tests and scanning electron microscopy observations were used to study the effects of the SCFs, MWNTs, and their combination on tensile properties, impact strength, and fracture toughness of the epoxy composites. The results show that the surface roughness of the SCFs after BMLPO treatment increased, and the wettability of the SCFs was improved as well. The combined use of the SCFs and MWNTs had a synergetic effect on the tensile strength, fracture toughness, and impact strength of the epoxy composites. The addition of MWNTs promoted the plastic deformation of the epoxy matrix and decreased the stress‐concentration level near the SCF/matrix interface; these were considered the main causes of the synergetic effect. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43500.  相似文献   

15.
Phenalkamine, the Mannich reaction products from cardanol, formaldehyde, and polyamines were prepared using ethylene diamine, diethylene triamine and triethlene tetraamine. These products were characterized by high‐pressure liquid chromatography (HPLC), infrared spectroscopy, and nuclear magnetic resonance spectroscopy (1H NMR). Clearly resolved peaks due to presence of triene, diene, monoene, and saturated side chain containing species of cardanol were observed in HPLC. The presence of characteristic methylene linkages of Mannich bases at δ 3.5–4.0 ppm was observed by 1H NMR. These curing agents were reacted with diglycidyl ether of bisphenol‐A at room temperature and the curing times were optimized. The cured resins showed good adhesion with different metal surfaces particularly higher values were observed with copper due to its high surface energy. The viscoelastic properties of the cured samples were determined by dynamic mechanical thermal analysis. The storage modulus (E′) was found to be in the order of 109 Pa and tan δ values are around 90°C. A reduction in storage modulus (E′) and an increase in tan δ values on postcuring were observed. Thermogravimetry analysis showed two‐stage degradation above 250°C for the cured samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4741–4748, 2006  相似文献   

16.
The tensile and shear strengths of adhesively bonded aluminum (Al) joints were inspected in the presence of amino functionalized multi-wall carbon nanotubes (MWCNTs). Tensile and shear tests were carried out using butt and lap-shear joints. The main goal was to compare the effects of dispersion methods of functionalized-CNT into epoxy on the mechanical performances and failure mechanisms of Al joints. Two different types of dispersion procedures, distributing CNT in the hardener (HH method) and distributing CNT in the resin (RR method), were applied. To identify the failure mechanisms, the morphology of fracture surfaces were analyzed using scanning electron microscopy (SEM). Comparing two dispersion methods against one another ascertained that following the RR method for dispersing CNTs in the adhesive displayed larger shear strength, while applying HH method offered fairly greater tensile strength. Moreover, dispersing CNTs in the resin induced more uniform dispersion of CNTs as compared to distributing nanofillers in the hardener. Following RR method, CNTs good dispersion as well as the presence of effective crack growth dissipating mechanisms, increased the shear strength of CNT reinforced adhesive joint. Incorporating CNTs using HH approach encouraged the plastic void formation of epoxy around the agglomerated CNTs, and as a consequence, promoted the plastic deformation under tension.  相似文献   

17.
Abstract

Adhesive bonding is the best alternative to riveting in aircraft structures but the strength of the adhesive bonded joint is low and is limited by strength of adhesive. Strengthening of adhesive bonding is an important requirement. In this work, an attempt has been made to strengthen the adhesive bonding by mixing different quantities of brittle adhesive in the ductile adhesive and vice-versa. Two different adhesives, one brittle (AV138) and another ductile (Araldite-2015) adhesive have been considered. Initially single lap joint has been constructed between the CFRP and aluminium with individual adhesives, then the mixture of adhesives have been used in the bonded region in varied proportions. The X-ray radiography and ultrasonic testing have been performed to check the quality of bonding. Uniaxial tensile tests have been conducted on the lap joints along with Digital Image Correlations (DIC) to obtain the individual and mixed adhesive bond strength. The failure patterns have been identified using optical and scanning electron microscope. These studies indicate that strengthening of the adhesive bonding achieved by mixing of two adhesives and highest bond strength obtained when the mixture of AV138 and Araldite-2015 adhesives are used in equal proportions.  相似文献   

18.
19.
The introduction of high molecular weight poly(methyl methacrylate) or poly(butadiene-co-acrylonitrile) into ethyl 2-cyanoacrylate produced viscous adhesives with a homogeneous or heterogeneous structure after cure. Steel joints bonded with these adhesives are shown to have improved tensile shear strength, deformability and stress relaxation of bonds compared with pure cyanoacrylate adhesive. Poly(methyl methacrylate)-modified adhesive is recommended for static load-bearing joints while poly(butadiene-co-acrylonitrile)-modified adhesive is more suited to cyclic or vibrating loads.  相似文献   

20.
The mechanical and adhesive properties of epoxy formulations based on diglycidyl ether of bisphenol A cured with various aliphatic amines were evaluated in the glass state. Impact and uniaxial compression tests were used to determine the impact energy, elastic modulus and yield stress, respectively. The adhesion tests were carried out in steel–steel joints using single‐lap shear, T‐peel, and impact adhesive joints geometry. The better mechanical and adhesive behavior of the networks is obtained when exists high flexibility of chain between crosslink and/or high elastic modulus. The 1‐(2‐aminoethyl)piperazine epoxy network presents the best adhesive properties, high flexibility, and the largest impact energy. However, it possesses low elastic modulus and yield stress. Also, exhibits increases in peel strength and impact energy while reductions in lap shear strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号