首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
The effects of interphase elastic modulus, glass transition temperature, and thickness on interfacial shear strength were investigated both experimentally and theoretically. Single fiber fragmentation tests were performed over a range of temperatures on samples with tailored interphases. Three different types of interphases were investigated: high modulus/high glass transition temperature, low modulus/low glass transition temperature and uncoated (no tailored interphase). A reduction in interfacial shear strength with temperature was observed for all three types of samples tested. The magnitude of this decrease was found to correlate with the glass transition temperature of the interphase. The low Tg interphase samples showed large reductions in IFSS, while samples with a higher Tg coating showed only a small decrease. A three-phase, axisymmetric elasticity solution was developed to predict the sensitivity of the stress state to the interphase material properties and temperatures used in the experimental studies. Predictions which incorporated the change in modulus of both the matrix and interphase with temperature were in good agreement with the experimental trends. Both the theoretical and experimental results supported the existence of an interphase with reduced glass transition in the uncoated samples.  相似文献   

2.
Several stress analysis methods were used to find the energy release rate for initiation of an interfacial crack in a microbond specimen. First, we used a recently-derived variational mechanics analysis of the stresses in a microbond specimen. Previous studies for analysis of crack growth have used shear-lag methods. For a second analysis, we present a new, and more complete, shear-lag analysis of the microbond specimen. Third, we consider some previously-published theories. For each of the stress analyses, the calculated energy release rate was used to predict the debonding stress as a function of the droplet length. The predictions were compared with two experimental results. Our new analyses that include residual thermal stresses were found to be the best. It was further observed that some of the terms in the analysis are negligible. The remaining terms provide a simple tool for doing a fracture mechanics analysis of microbond experiments.  相似文献   

3.
采用了磺化聚芳酰胺(SPA)和固化剂593分别对PBO纤维进行表面处理,用钢针将配好的环氧树脂基体溶液似微球状滴在固定在试样架上的PBO纤维上,考察了处理前后PBO纤维与环氧树脂界面剪切强度的变化。结果表明,两种表面处理对PBO纤维与环氧树脂基体的界面剪切强度都有贡献,其中固化剂处理能显著提高界面剪切强度,改变了界面破坏模式,使PBO纤维与环氧树脂基体的界面剪切强度最高可达19.41 MPa,比未处理时的界面剪切强度提高95%。  相似文献   

4.
Physical aging was used to vary the mechanical properties of model single fiber composites without changing the chemistry at the interface in order to study how property changes affect the measurement of interfacial adhesion by the fragmentation test. The properties of epoxy matrix/AS4 single fiber composites driven to full cure (Tg = 166°C) are altered by annealing below Tg. Neat resin samples with identical thermal histories are tested. All aged panels show roughly the same embrittlement with aging characterized by an average 30% decrease in tensile failure strain and 7.3% increase in compressive yield relative to quenched samples. Fragmentation results indicated no change between aged and quenched samples. Results are discussed in terms of micromechanics models for the fragmentation test. Strain at fragmentation increased with aging. This was related to the residual stress state in the model composite and the possibility of the zero stress state of the single fiber composites increasing with thermal annealing.  相似文献   

5.
Physical aging was used to vary the mechanical properties of model single fiber composites without changing the chemistry at the interface in order to study how property changes affect the measurement of interfacial adhesion by the fragmentation test. The properties of epoxy matrix/AS4 single fiber composites driven to full cure (Tg = 166°C) are altered by annealing below Tg . Neat resin samples with identical thermal histories are tested. All aged panels show roughly the same embrittlement with aging characterized by an average 30% decrease in tensile failure strain and 7.3% increase in compressive yield relative to quenched samples. Fragmentation results indicated no change between aged and quenched samples. Results are discussed in terms of micromechanics models for the fragmentation test. Strain at fragmentation increased with aging. This was related to the residual stress state in the model composite and the possibility of the zero stress state of the single fiber composites increasing with thermal annealing.  相似文献   

6.
A micromechanical study of the behaviour of poly(p-phenylene benzobisthiazole) ( )/epoxy interfaces is performed using two testing procedures, the droplet micropull-out test, and a version of the fragmentation test in which the stress and strain are continuously monitored by optical microscopy and video recording. Since very few interfacial strength data are currently available for /epoxy composites, it is the purpose of our study to generate such data for this system. The fragmentation phenomenon in /epoxy is found to be complex and more difficult to interpret than in brittle fibre composite systems, due to the fibrillation failure mode of the fibre. The interfacial shear strength value based on the fragmentation test is 17.3 MPa, approximately twice the value measured with the droplet micropull-out test.  相似文献   

7.
This paper presents the results of comprehensive testing to characterize the effect of several different surface treatments on shear and tensile bond strength between 7075-T6 aluminum and two epoxy systems: EPON 815/V40 and EPON 828/Z. A rod pull-out test was used to determine interfacial shear strength, modeled after similar tests on reinforced concrete. The tensile bond strength was characterized using a tension test fixture designed in this study. Overall, the interfacial shear strengths were higher than the tension strengths. Surface knurling gave the highest interfacial shear strength, representing a 72% increase over untreated specimens. Phosphoric acid anodization (PAA) was also quite effective in shear. In tension, the highest strength was obtained from specimens treated with the PAA process along with a silane coupling agent. These specimens showed an increase in interfacial tensile strength by a factor of 5.6.  相似文献   

8.
Recently, it has been reported by our group and others1.2 that loss of curing agent is encountered during the curing of small droplets or thin films of amine cured epoxies. In our earlier study3 results were reported on loss of curing agent in small droplets used in conducting the rnicrobond, single fiber test for determination of interfacial shear strength (ISS). It was reported that use of a volatile curing agent (meta-phenylene diamine (m-PDA) with DGEBA resin) resulted in increasing amounts of curing agent being lost (as measured by T8 of the cured droplets) with decreasing droplet size during the processing procedure. Droplets smaller than 150 micrometers were seen to lose up to 40% of the curing agent leading to alteration of the mechanical properties of the droplet and, therefore, causing measured values of ISS to be exceedingly low. Use of a less volatile curing agent (Jeffamine 700, a polyether diamine, Texaco Specialty Chemicals) in combination with DGEBA resin produced results which indicated that loss of curing agent was not occuring. This study was undertaken to show the relationships between film (or droplet) size and the amount of curing agent lost (during the processing) for three different aminecured epoxy systems.  相似文献   

9.
纤维树脂基复合材料中界面微观结构和性质对材料的宏观性能起着关键性作用。为了能够准确地测试纤维树脂间的界面粘结力,表征纤维与树脂之间界面剪切应力传递效率,人们一直试图找到一种方法能够真实全面反映界面性能,以及纤维断裂、界面脱粘、树脂横向断裂等因素对界面性能的影响。为此作者对现有微观界面表征方法进行介绍与分析,包括:微珠试验、单纤维拉出试验、压入试验、单纤维断裂试验、激光拉曼(或荧光)色谱法、光弹分析法,全面剖析它们的适用范围。  相似文献   

10.
Type II (high strength) carbon fibres have been given a low power nitrogen plasma treatment. It is shown that this plasma treatment has no effect on the fibre diameter, no detrimental effect on fibre strength and can significantly improve fibre/resin adhesion. It is proposed that this improvement is due to chemical interaction via amine/epoxy bonding at the edge sites together with the interaction of the epoxy with activated basal planes present on the fibre surface. This improvement is only achieved if the fibres are immersed in resin before being exposed to air. Exposing the treated fibres to air drastically reduces fibre/adhesion due to the adsorption of moisture from the environment. Heating these latter fibres in a vacuum at 130°C for one hour allows some recovery of the interfacial strength. It is also demonstrated that the interfacial shear strength falls dramatically when the nitrogen-containing functional groups are completely removed from the fibre surface.  相似文献   

11.
Type II (high strength) carbon fibres have been given a low power nitrogen plasma treatment. It is shown that this plasma treatment has no effect on the fibre diameter, no detrimental effect on fibre strength and can significantly improve fibre/resin adhesion. It is proposed that this improvement is due to chemical interaction via amine/epoxy bonding at the edge sites together with the interaction of the epoxy with activated basal planes present on the fibre surface. This improvement is only achieved if the fibres are immersed in resin before being exposed to air. Exposing the treated fibres to air drastically reduces fibre/adhesion due to the adsorption of moisture from the environment. Heating these latter fibres in a vacuum at 130°C for one hour allows some recovery of the interfacial strength. It is also demonstrated that the interfacial shear strength falls dramatically when the nitrogen-containing functional groups are completely removed from the fibre surface.  相似文献   

12.
Adhesion at the fiber‐matrix interface of a composite is often influenced by a combination of factors such as mechanical interlocking, physicochemical interactions, and chemical bonding in the fiber‐matrix interphase region. We demonstrate the use of an approach using self‐assembled monolayers (SAMs) for studying the impact of one of the factors, chemical bonding, on the overall adhesion of the glass‐fiber/matrix interface. Transformation of these monolayer surfaces using conventional chemistry with a focus on the creation of a terminal functional group that interacts with epoxy resin is reported. The modified surfaces were characterized by ellipsometry, X‐ray photoelectron spectroscopy, and contact angle techniques for chlorosilane coverage, and in situ conversion. The adhesion of diglycidyl ether of bisphenol‐A resin to modified SAMs on E‐glass fibers was measured by performing single‐fiber fragmentation test. The extent of adhesion between the fiber and matrix was found to be dependent on the type of functional group at the terminal end of the SAM in contact with the epoxy matrix. Methyl terminal group resulted in the least adhesion, while amine terminal groups resulted in the most adhesion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
The scope of this study was the investigation of the effects of both processing conditions (in terms of thermo-mechanical history) and interphase modification (fiber sizing and/or matrix coupling) on the interfacial shear strength (τi) of fiber reinforced isotactic polypropylene (iPP). Fiber/matrix load transfer efficiency was investigated by modified single fiber pullout and microdroplet pulloff test methods, respectively. It was established that τi of the neat microcomposite (unsized fiber/uncoupled matrix) is improved by quenching of the samples rather than by various spherulitic or transcrystalline supermolecular structures set under isothermal crystallization conditions. Enhanced interfacial shear strength for the quenched samples was attributed to a better wetting behaviour and a fine dispersion of the amorphous PP (aPP) fraction formed. An adhesion model was proposed based on which optimum τi is linked to both matrix strength and its wetting behaviour. It was demonstrated that the results from pullout and pulloff tests correlate very well with each other for the particular glass fiber/iPP model composite systems studied. It was shown further that matrix modification (coupling) or fiber sizing enhances τi practically to the same level, whereas a combination of matrix coupling and fiber sizing yields an even higher interfacial shear strength (synergistic effect).  相似文献   

14.
The adhesive interaction between oxygen-plasma-treated, polyacrylonitrile-based, high-tensile-strength carbon fibers and a polycarbonate matrix has been studied. Several models have been used to predict the impact of the plasma treatment process on the strength of adhesion between both jointing partners. These approaches have been the thermodynamic work of adhesion which was calculated from the solid surface tensions, based on the results of contact angle measurements versus test liquids, the contact angle which was directly obtained via polycarbonate melt droplets on single carbon fibers and the zeta (ς)-potential data provided by streaming potential measurements. The results have been compared with the interfacial shear strength determined from the single-fiber fragmentation test. Additionally, the single-fiber tensile strength of the oxygen-plasma-treated carbon fibers was determined.

We confirmed that any physico-chemical method on its own fails to describe exactly the measured adhesion. However, for the investigated system, the conscientious interpretation of the data obtained from wetting measurements, in conjunction with the thermodynamic approach, is sufficient to predict the success of a modification technique which has been applied to one component in order to improve adhesion.  相似文献   

15.
The adhesive interaction between oxygen-plasma-treated, polyacrylonitrile-based, high-tensile-strength carbon fibers and a polycarbonate matrix has been studied. Several models have been used to predict the impact of the plasma treatment process on the strength of adhesion between both jointing partners. These approaches have been the thermodynamic work of adhesion which was calculated from the solid surface tensions, based on the results of contact angle measurements versus test liquids, the contact angle which was directly obtained via polycarbonate melt droplets on single carbon fibers and the zeta (?)-potential data provided by streaming potential measurements. The results have been compared with the interfacial shear strength determined from the single-fiber fragmentation test. Additionally, the single-fiber tensile strength of the oxygen-plasma-treated carbon fibers was determined.

We confirmed that any physico-chemical method on its own fails to describe exactly the measured adhesion. However, for the investigated system, the conscientious interpretation of the data obtained from wetting measurements, in conjunction with the thermodynamic approach, is sufficient to predict the success of a modification technique which has been applied to one component in order to improve adhesion.  相似文献   

16.
Interfacial shear strength (IFSS) of carbon fibers with vinyl ester resin was investigated as a function of the structure of the polymer coating on carbon fibers via microdroplet tests. For coating carbon fibers, high‐performance polymers such as poly(arylene ether phosphine oxide) (PEPO), Udel® P‐1700, and Ultem® 1000, water‐soluble poly(hydroxy ether ethanol amine) (PHEA), water‐dispersed carboxy‐modified poly(hydroxy ether) (C‐PHE), and water‐insoluble poly(hydroxy ether) (PHE) were utilized. Adhesion of polymers to carbon fibers was also evaluated and the failure surface of the fibers was analyzed by SEM to understand the adhesion mechanism. Diffusion between polymers and vinyl ester resins was investigated and the solubility parameters of the polymers were calculated, with the results being correlated to the IFSS. A highly enhanced IFSS was obtained with PEPO coating, while marginally improved IFSS resulted from PHE, Udel®, and C‐PHE coatings. However, PHEA and Ultem® coatings showed no improvement. Such results were attributed to the extent of solubility and/or miscibility of polymer coatings in vinyl ester resin, with better solubility and miscibility leading to a higher IFSS. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1042–1053, 2001  相似文献   

17.
This paper summarizes a study on the effect of changes in surface chemistry on the peel strength of copper/polymer interfaces. Two different surface topographics were created and evaluated, one produced by cleaning and etching in sodium persulfate, the other by etching then mechanically roughening using 180 grit sandpaper. Both surfaces were then oxidized in an alkaline/oxidizing treatment to form cupric oxide. Ion implantation and benzotriazole priming modified the surface chemistry of the cupric oxide samples. After lamination to form an epoxy/copper interface, peel strength measurements were taken. The results showed that ion implantation degraded the peel strength while priming with benzotriazole improved the peel strength compared with the unmodified cupric oxide. In a separate comparison study, peel strength measurements were taken on interfaces formed from copper oxides with the same oxide structure but with widely different gross morphologies, “As laminated” adhesive strength was virtually the same. The bonded interfaces were aged at elevated temperature and the peel strength obeyed first order degradation kinetics. Two terms can be determined from the degradation studies, the first is the long term peel strength, A(∞), and the other is Ω, the degradation rate with units of time-1. A value of A(∞) was 3.0 lbs/in for etched copper interfaces while A(∞) was 0.5 lbs/in for the sanded interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号