首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
An investigation of an adhesively bonded composite joint with a brittle adhesive was conducted to characterize both the static and fatigue debond growth mechanism under mode I and mixed mode I-II loadings. The bonded system consisted of graphite/epoxy adherends bonded with FM-400 adhesive. Two specimen types were tested: (1) a double-cantilever-beam specimen for mode I loading and (2) a cracked-lap-shear specimen for mixed mode I-II loading. In all specimens tested, failure occurred in the form of debond growth either in a cohesive or adhesive manner. The total strain-energy-release rate is not the criterion for cohesive debond growth under static and fatigue loading in the birttle adhesive as observed in previous studies with the ductile adhesives. Furthermore, the relative fatigue resistance and threshold value of cyclic debond growth in terms of its static fracture strength is higher in the brittle adhesive than its counterpart in the ductile adhesive.  相似文献   

2.
Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of (1) adherend thickness and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16 or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.  相似文献   

3.
4.
Double cantilever beam fracture specimens were used to investigate rate dependent failures of model epoxy/steel adhesively bonded systems. Quasi-static tests exhibited time dependent crack growth and the maximum fracture energies consistently decreased with debond length for constant crosshead rate loading. It was also possible to cause debonding to switch between interfacial and cohesive failure modes by simply altering the loading rate. These rate dependent observations were characterized using the concepts of fracture mechanics. The time rate of change of the strain energy release rate, dG/dt, is introduced to model and predict failure properties of different adhesive systems over a range of testing rates. An emphasis is placed on the interfacial failure process and how rate dependent interfacial properties can lead to cohesive failures in the same adhesive system. Specific applications of the resulting model are presented and found to be in good agreement when compared with the experimental data. Finally, a failure envelope is identified which may be useful in predicting whether failures will be interfacial or cohesive depending on the rate of testing for the model adhesive systems.  相似文献   

5.
Cohesive Zone Models (CZM) are widely used for the strength prediction of adhesive joints. Different simulation conditions, such as damage initiation and growth criteria, are available for use in CZM analyses to provide the mixed-mode behaviour. Thus, it is highly relevant to understand in detail their influence on the simulations’ outcome. This work studies the influence of different conditions used in CZM simulations to model a thin adhesive layer in single-lap joints (SLJ) under a tensile loading, for an estimation of their influence on the strength prediction under diverse geometrical and material conditions. Validation with experimental data is considered. Adhesives ranging from brittle to highly ductile and overlap lengths (LO) between 12.5 and 50 mm were considered. Different studies were considered: Variation of the elastic stiffness of the cohesive laws, different mesh refinements, study of the element type, and evaluation of several damage initiation and growth criteria. The analysis carried out in this work confirmed the known suitability of CZM for static strength prediction of bonded joints and pointed out the best set of numerical conditions for this purpose. Inaccurate results can be obtained if the choice of the modelling conditions is not the most suitable for the problem.  相似文献   

6.
Cyclic debond data obtained from fatigue testing of four different specimen geometries having the same adhesive is considered. Fatigue properties of the adhesive are characterized in terms of linear elastic fracture mechanics concepts whereby debond growth rates are correlated to appropriate mixed mode fracture parameters. Stress analyses of the four specimens under maximum load indicate that in most cases inclusion of geometric nonlinearities is required for the determination of the fracture parameters. For three of the specimens considered, the debond growth laws based on total energy release rate as correlating mixed-mode fracture parameter were found to be similar. A number of potential reasons for the lack of similarity in debond growth laws in all four specimens are explored.  相似文献   

7.
Abstract

The present work intends to describe all procedures developed in order to predict the fatigue/fracture behaviour of single-strap repairs of carbon-epoxy composites. The main goal is to validate a mixed-mode I + II cohesive zone model for high-cycle fatigue based on the modified Paris law. A preliminary static fracture characterisation in mode I, mode II and mixed-mode I + II is necessary in order to achieve the static energetic criterion describing fracture of the bonded joint. Subsequently, the same tests were carried out under high-cycle fatigue loading in order to determine the evolution of the modified Paris law parameters as function of mode ratio. These fatigue/fracture characterisation tests were also used to validate the cohesive mixed-mode I + II zone model appropriate for high-cycle fatigue. The model was then used to predict fatigue life of the single-strap repairs and revealed good performance when compared with experimental results. Finally, the model was utilised to assess the influence of specimen geometry on the fatigue life of these structural repairs. It was concluded that such type of models can be considered appealing tools concerning the optimisation of repaired structures fatigue life.  相似文献   

8.
A bonded composite reinforcement is being developed for the Royal Australian Air Force F/A-18 Y470.5 bulkhead crotch region. Due to the curvature of the surface in this area any bonded reinforcement was predicted to have high through-thickness stresses present in the adhesive under load. A representative specimen, the “curved beam specimen” (CBS) was designed using finite element analysis to identify the stress state in the joint and determine the through-thickness stresses in the adhesive. The specimen was then mechanically tested to failure under static loads and also under spectrum fatigue loading to determine the viability of the repair. The data from the above program was used to determine an estimate for the through-thickness stress design allowable for the structural film adhesive Cytec FM73. It is suggested that the CBS will prove to be a suitable specimen for providing generic data on the through-thickness static and fatigue strength of adhesives.  相似文献   

9.
Tensile and fatigue disbond propagation studies on scrim cloth structural adhesive lap joints without and with rivet holes were performed. The geometry of the rivet holes is similar to that in a fuselage part of an aircraft. The joints were cycled in tension-tension fatigue at a frequency of 3 Hz and a maximum load, below the linear limit of the joint, which was obtained from the tensile tests of similar joints. The disbond length at each corner of the joint was viewed using a travelling optical microscope attached to a video camera. It was found that the static-tensile behavior of both types of joints (without and with rivet holes) consists of three stages: a linear stage followed by a region of increased non-linearity and then a 'yield' region. It is within this yield region that the rivet holes affect the strength of the joint. Stress analysis of the disbond problem under static loading revealed a strong mixed mode between the opening and shear mode stress intensity factors for both types of joints. The fatigue disbond kinetics of adhesively bonded joints without and with rivet holes were found to display an S-shaped curve with three stages of the disbond propagation rate. Failure analysis of the fatigue failed joints (without and with rivet holes) revealed three distinct regions on each half of the failed joint: an interfacial region with bare metal, a cohesive region, and an interfacial region with the adhesive adhered to the substrate. Scanning electron microscopic analysis of the disbond surface showed that the cohesive region of the fatigue fractured joints is more tortuous compared with the statically failed joints.  相似文献   

10.
A model to predict fatigue crack growth in bonded joints under mixed mode I/II conditions is developed in this work. The model is implemented in the finite element software ABAQUS using the related USDFLD subroutine. The present model is based on the cohesive zone (CZ) concept, where damage develops according to the value of the opening/sliding at the bondline under static loading, and according to a cyclic damage accumulation law under fatigue loading. The damage accumulation law is obtained by distributing the cyclic crack area increment over the process zone ahead of the crack tip, where the cyclic crack area increment is calculated according to a Paris-like law that relates the crack growth rate to the applied loading. In this way, the experimental crack growth rate is related directly to damage evolution in the cohesive zone, i.e., no additional parameters have to be tuned besides the quasi-static cohesive zone parameters.  相似文献   

11.
Structural acrylic adhesives are of special interest because those adhesives are cured at room temperature and can be bonded to oily substrates. To use those adhesives widely for structural bonding, it is necessary to clarify the methodology for predicting strengths of bonding structures with those adhesives. Recently, cohesive zone models (CZMs) have been receiving intensive attentions for simulation of fracture strengths of adhesive joints, especially when bonded with ductile adhesives. The traction-separation laws under mode I and mode II loadings require to estimate fracture toughness of adhesively bonded joints. In this paper, the traction-separation laws of an acrylic adhesive in mode I and mode II were directly obtained from experiments using Arcan type adhesively bonded specimens. The traction-separation laws were determined by simultaneously recording the J-integral and the opening displacements in the directions normal and tangential to the adhesive layer, respectively.  相似文献   

12.
Fatigue and corrosion damage are the major concerns of automotive adhesive joints, yet literature reports few works about the in situ fatigue durability of adhesive joints in corrosive environment. This study presents an investigation on the fatigue durability of automotive adhesive single lap joints by an in situ corrosion fatigue test. The joints were manufactured with commercial coated AA5754-O aluminum sheets bonded by a toughened epoxy structural adhesive. An in situ corrosion chamber was designed and employed to simulate a humid and corrosive environment by spraying 5% saline solution or distilled water mist around the joints’ overlap area during fatigue testing. The test results show that in the 5% saline solution mist environment, the joints’ fatigue lives encountered a great loss for about an order in magnitude compared to the joints tested in laboratory environment. The difference of fatigue lives between 5% saline solution mist test and distilled water mist test is insignificant. The fracture surface analysis by scanning electron microscope and EDX techniques indicates that the adhesive joints failed interfacially in the corrosive environment, which differs from the cohesive failure mode in the laboratory environment.  相似文献   

13.
An experimental–computational fracture-mechanics approach for the analysis and design of structural adhesive joints under static loading is demonstrated by predicting the ultimate fracture load of cracked lap shear and single lap shear aluminum and steel joints bonded using a highly toughened epoxy adhesive. The predictions are then compared with measured values. The effects of spew fillet, adhesive thickness, and surface roughness on the quasi-static strength of the joints are also discussed. This fracture-mechanics approach is extended to characterize the fatigue threshold and crack growth behavior of a toughened epoxy adhesive system for design purposes. The effects of the mode ratio of loading, adhesive thickness, substrate modulus, spew fillet, and surface roughness on the fatigue threshold and crack growth rates are considered. A finite element model is developed to both explain the experimental results and to predict how a change in an adhesive system affects the fatigue performance of the bonded joint.  相似文献   

14.
The adhesively bonded tubular single lap joint shows nonlinear torque transmission capability and deformation characteristics under static torsional loading because of nonlinear properties of the adhesive. However, the dynamic or fatigue torque transmission capability can be calculated with linear, analysis because the stress-strain relation under torsional fatigue loading is linear, due to the small dynamic transmission capability compared with the static torque transmission capability.

In this paper, a failure model for the adhesively bonded tubular single lap joint under torsional fatigue loading was developed with respect to the adhesive thickness, which is the critical factor for the static torque transmission capability. Also, a design method for the adhesively bonded tubular single lap joint under torsional fatigue loading was proposed.  相似文献   

15.
The influence of loading rates and the combined stress states of tension and shearing on the strength, strain, and absorbed energy of an adhesively bonded joint was experimentally investigated. Cylindrical butt joint specimens were prepared and strength tests were performed on the specimens with a servo-controlled hydraulic testing machine that combined tension and torsion loading. Two types of epoxy adhesives, ductile and brittle, were applied to the specimens. The tests were performed under a quasi-static condition of 6.67×10−2 MPa/s and a high-rate loading condition of 1.00×103 MPa/s. The results of the combined loading tests showed that the states of the fractured surfaces were not affected by the loading rates. As for the ratio of tensile and shear loading, adhesive failure tended to partially occur when the ratio of shear loading was very high. The strength points for the specimens bonded with each adhesive were distributed in a stress plane of tension and shearing and could be fitted with a curve that was described by an equation with exponential parameters that were not influenced by the strain rate; however, other parameters that described the intercepts were influenced. The failure strains and absorbed energies for the brittle adhesive were slightly dependent on the strain rate, but this dependency was unclear for the ductile adhesive.  相似文献   

16.
The fatigue behavior of 28 amorphous and semi-crystalline thermoplastic polymers and elastomers is tested under strain controlled sinusoidal tension-tension (TT) and torsion (T) at room temperature and analyzed via strain-life (total strain amplitude versus fatigue lifetime) and crack propagation rate versus total strain amplitude curves, analogous to Paris’ law. Investigating fatigue is extremely time- and resources consuming, so universal relationships between the exponents of the strain-life power-law and material properties are of high importance. For a brittle failure mechanism (I), the strain-life curves are found to have fixed exponents of BTT,I = −0.27 and BT,I = −0.22, respectively, while the crack propagation versus strain amplitude in TT has an exponent of mda/dN,I = 4. For ductile failure (II), fixed strain-life curve exponents in TT of BTT,II = −0.35 and in torsion of BT,II = −0.48 with mda/dN,II = 2.8 are obtained. In torsion, most semi-crystalline polymers show brittle and ductile failure depending on the applied strain amplitude, so the strain-life curve exponent changes accordingly. The universal exponents for strain-life and crack growth-strain amplitude curves offer a significant simplification to rapidly estimate, predict, and simulate the fatigue behavior of polymers.  相似文献   

17.
Mode I fatigue crack growth tests were conducted on joints bonded with a filled adhesive (A) at 20 Hz and 2 Hz and on joints bonded with a filled and toughened adhesive (B) at 20 Hz, 2 Hz, 0.2 Hz and 0.02 Hz. Strain energy release rate, G, and J-integral were evaluated based on elastic and elastoplastic finite element analyses (FEA) of the joints bonded with adhesive A and B, respectively. For the configurations considered, J was found to be path-independent and did not differ much from G. The fatigue crack growth rate (FCGR), da/dN, in the joints bonded with adhesive A was relatively independent of frequency while it increased with decreasing frequency at given δ for the joints bonded with adhesive B. The fatigue processes in both adhesives involved the cracking of the filler particles and subsequent linkage of the resultant microcracks. The process zone in adhesive B is larger than that in adhesive A and it increases with decreasing frequency. It is suggested that this variation in process zone size can account for the observed fatigue behaviour. The fatigue crack growth velocity, da/dt, was also calculated for the joints bonded with adhesive B and the variation of da/dt with test frequency at given δG is much smaller than the variation in da/dN, suggesting a creep effect in the fatigue crack growth.  相似文献   

18.
Elastic-plastic fracture behavior of a structural adhesive in the bulk and bonded forms is discussed. The model adhesive chosen, Metlbond 1113 (with scrim carrier cloth) and 1113-2 (neat resin) solid film adhesives exhibit a relatively brittle material behavior to justify the use of LEFM methods.

The solid film adhesives are first cast in the form of tensile coupons to determine the bulk fracture properties with the use of single-edge-cracked specimen geometry. KIc evaluation is done using the procedure suggested by the ASTM standard. A K-calibration method based on application of boundary collocation procedure to the William's stress function is utilized to relate the measured critical loads to the KIc values. The yield stresses and elastic moduli values in the bulk tensile mode are also evaluated. The availability of KIc à y E and v (Poisson's ratio) values makes the calculation of crack tip plastic zone radii (ryc ) and fracture energy (GIc ) values possible on the basis of Irwin's theory. The bulk casting procedure is done under different cure (temperature, time and cool-down) conditions to determine optimum properties.

The fracture behavior of the same adhesives in the bonded form is studied with the use of Independently Loaded Mixed Mode Specimen (ILMMS) geometry. This specimen allows independent measurement of PI and PII (and consequently GI and GII ) values. Since the fracture energy values are affected by the thickness of the adherend and the bondline, an experimental program is executed first by varying these geometrical parameters to determine the plane strain conditions. The relationship between the bondline thickness and the crack tip plastic zone radius values calculated earlier is also studied. Expressions developed on the basis of LEFM assumptions are utilized to calculate GIc and GIIC values in the bonded form. The GIC values obtained in this manner are compared to the bulk GIC values obtained earlier.

With the availability of PI and PII (GI and GII ) values that result in failure in the bonded form, the fracture condition (i.e. the fracture failure criterion) in mixed mode (modes I and II) loading is determined for adhesively bonded joints. The use of both 1113 and 1113-2 adhesives also reveals the effects of the carrier cloth on the mechanical phenomena cited above.  相似文献   

19.
《The Journal of Adhesion》2013,89(12):1161-1182

The main aim of this article is to investigate the effect of frequency on fatigue crack propagation in adhesively bonded joints. Adhesively bonded double-cantilever beam (DCB) samples were tested in fatigue at various frequencies between 0.1 and 10 Hz. The adhesive used was a toughened epoxy, and the substrates used were a carbon fibre-reinforced polymer (CFRP) and mild steel. Results showed that the crack growth per cycle increases and the fatigue threshold decreases as the test frequency decreases. The locus of failure with the CFRP adherends was predominantly in the adhesive layer, whereas the locus of failure with the steel adherends was in the interfacial region between the steel and the adhesive. The crack growth was faster, for a given strain energy release rate, and the fatigue thresholds lower for the samples with steel adherends. Tests with variable frequency loading were also carried out, and a generalised method of predicting crack growth in samples subjected to a variable frequency loading was introduced. The predicted crack growth using this method agreed well with experimental results.  相似文献   

20.
Abstract

Adhesive bonding is the best alternative to riveting in aircraft structures but the strength of the adhesive bonded joint is low and is limited by strength of adhesive. Strengthening of adhesive bonding is an important requirement. In this work, an attempt has been made to strengthen the adhesive bonding by mixing different quantities of brittle adhesive in the ductile adhesive and vice-versa. Two different adhesives, one brittle (AV138) and another ductile (Araldite-2015) adhesive have been considered. Initially single lap joint has been constructed between the CFRP and aluminium with individual adhesives, then the mixture of adhesives have been used in the bonded region in varied proportions. The X-ray radiography and ultrasonic testing have been performed to check the quality of bonding. Uniaxial tensile tests have been conducted on the lap joints along with Digital Image Correlations (DIC) to obtain the individual and mixed adhesive bond strength. The failure patterns have been identified using optical and scanning electron microscope. These studies indicate that strengthening of the adhesive bonding achieved by mixing of two adhesives and highest bond strength obtained when the mixture of AV138 and Araldite-2015 adhesives are used in equal proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号