共查询到3条相似文献,搜索用时 15 毫秒
1.
The viscoelastic and peeling properties of polybutadiene/tackifying resin compatible blends have been studied in detail. Viscoelastic properties have been described through the variations of the complex shear modulus, G*(w), as a function of frequency, W, and peeling properties through the variations of peeling force (F) as a function of peeling rate (V).
The first paper of this series presented the cohesive fracture domain and the present paper explores the interfacial fracture domain: (i) rubbery interfacial (interfacial 1); (ii) stick-slip; (iii) glassy interfacial (interfacial 2). After a general survey of the properties in the three domains we present a quantitative relationship between the peeling and linear viscoelastic properties as a function of the adhesive formulation, discussing the use of time-temperature equivalence for adhesive properties. The third part of the paper presents the trumpet model of de Gennes describing the crack shape and propagation: starting from a mechanical analysis of the peeling test, it is shown how one may calculate the variations of the peeling force as a function of peeling rate in the various interfacial fracture domains: this model defines a single interfacial fracture criterion which coexists with the cohesive fracture criterion defined earlier, whatever the fracture location.
We present as a conclusion a critical discussion of the relevance and physical meaning of such a criterion and present a new outlook for the modeling and improvement of adhesive formulations. 相似文献
The first paper of this series presented the cohesive fracture domain and the present paper explores the interfacial fracture domain: (i) rubbery interfacial (interfacial 1); (ii) stick-slip; (iii) glassy interfacial (interfacial 2). After a general survey of the properties in the three domains we present a quantitative relationship between the peeling and linear viscoelastic properties as a function of the adhesive formulation, discussing the use of time-temperature equivalence for adhesive properties. The third part of the paper presents the trumpet model of de Gennes describing the crack shape and propagation: starting from a mechanical analysis of the peeling test, it is shown how one may calculate the variations of the peeling force as a function of peeling rate in the various interfacial fracture domains: this model defines a single interfacial fracture criterion which coexists with the cohesive fracture criterion defined earlier, whatever the fracture location.
We present as a conclusion a critical discussion of the relevance and physical meaning of such a criterion and present a new outlook for the modeling and improvement of adhesive formulations. 相似文献
2.
The viscoelastic and peeling properties of polybutadiene/tackifying resin compatible blends have been studied in detail. Viscoelastic properties have been described through the variations of the complex shear modulus, G*(ω), as a function of frequency, ω and peeling properties through the variations of peeling force (F) as a function of peeling rate (V).
After showing the objective character of the peeling curves obtained, the variations of the peeling force and peeling geometry have been studied as a function of volume fraction of the tackifying resin.
In this first paper, the analysis is focused on the first domain of the peeling curves, i.e. the cohesive fracture region. In this region, the peeling properties have been related to the viscoelastic properties in the terminal region of relaxation. It is shown that the longest relaxation time, τo, is a reducing parameter of the peeling curves, so a peeling master curve-which is independent of temperature, resin volume fraction and polymer molecular weight-may be defined. Furthermore, the variations of the test geometry as a function of peeling rate have been investigated: the variations of the radius of curvature of the aluminium foil have been analyzed with respect to the viscoelastic behavior of the adhesive, which in fact governs the test geometry.
A detailed analysis of all these features leads to a model which allows one to calculate the peeling curves in the cohesive domain from the adhesive formulation. 相似文献
After showing the objective character of the peeling curves obtained, the variations of the peeling force and peeling geometry have been studied as a function of volume fraction of the tackifying resin.
In this first paper, the analysis is focused on the first domain of the peeling curves, i.e. the cohesive fracture region. In this region, the peeling properties have been related to the viscoelastic properties in the terminal region of relaxation. It is shown that the longest relaxation time, τo, is a reducing parameter of the peeling curves, so a peeling master curve-which is independent of temperature, resin volume fraction and polymer molecular weight-may be defined. Furthermore, the variations of the test geometry as a function of peeling rate have been investigated: the variations of the radius of curvature of the aluminium foil have been analyzed with respect to the viscoelastic behavior of the adhesive, which in fact governs the test geometry.
A detailed analysis of all these features leads to a model which allows one to calculate the peeling curves in the cohesive domain from the adhesive formulation. 相似文献
3.
The viscoelastic and peeling properties of polybutadiene/tackifying resin compatible blends have been studied in detail. Viscoelastic properties have been described through the variations of the complex shear modulus, G*(ω), as a function of frequency, ω and peeling properties through the variations of peeling force (F) as a function of peeling rate (V). After showing the objective character of the peeling curves obtained, the variations of the peeling force and peeling geometry have been studied as a function of volume fraction of the tackifying resin. In this first paper, the analysis is focused on the first domain of the peeling curves, i.e. the cohesive fracture region. In this region, the peeling properties have been related to the viscoelastic properties in the terminal region of relaxation. It is shown that the longest relaxation time, τo, is a reducing parameter of the peeling curves, so a peeling master curve-which is independent of temperature, resin volume fraction and polymer molecular weight-may be defined. Furthermore, the variations of the test geometry as a function of peeling rate have been investigated: the variations of the radius of curvature of the aluminium foil have been analyzed with respect to the viscoelastic behavior of the adhesive, which in fact governs the test geometry. A detailed analysis of all these features leads to a model which allows one to calculate the peeling curves in the cohesive domain from the adhesive formulation. 相似文献