首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of conditioning dentin was investigated using ethyleneglycol bis(aminoethylether) tetraacetic acid (EGTA) and three proprietary agents containing ethylenediamine tetraacetic acid (EDTA), maleic acid and dipentaerythritol pentaacrylate phsophoric acid ester (PENTA). Ground dentin was treated with EGTA or one of the three proprietary agents. After adhering composite resin to treated surfaces, the shear bond strength (SBS) was determined with and without thermal stress. Scanning electron and atomic force microscopies were used to assess morphological effects of each of the agents, while low resolution X-ray photoelectron spectroscopy (XPS) was employed to evaluate elemental changes due to treatment. Mean bond strength was greatest for the PENTA-conditioned surfaces. EDTA and maleic acid demineralized the dentin surface while the agent containing PENTA produced an adherent surface film. The XPS survey showed a reduction in Ca and an increase in N for agents containing EGTA, EDTA and maleic acid, while a simultaneous reduction in both these species was observed for PENTA. EGTA did not improve adhesion for systems which were based on smear layer removal and substrate demineralization. For the PENTA-based system, which relied on the development of a molecular overlayer, EGTA degraded bond strength.  相似文献   

2.
Polypropylene (PP) film was treated with radio-frequency-induced oxygen plasma, followed by the vacuum deposition of aluminum (Al) thin film, and the peel strength of the Al deposited PP film (Al/PP) was examined. The peel strength of plasma-treated PP film varied widely in the range of 6.7 to 157 N/m depending upon the plasma treatment conditions, whereas that of the untreated PP was 5.2 N/m. The peel strength was minimized at oxygen pressure near 13.3 Pa (0.1 Torr), and decreased with increasing discharge power. The peel strength rapidly increased at the initial stage of plasma treatment (∼ several seconds), decreased at the second stage, and slightly increased again at the third stage. A good agreement was found between the peel strength of Al/PP and the amounts of oxygen introduced onto the PP surface at the initial stage. A short-time treatment was very effective to improve the adhesion of Al/PP. At the end of the second stage, a large amount of carbon was detected by XPS on the Al layer of the peeled interface of Al/PP, which gave a minimum peel strength. Cohesive failure of PP film might have occurred. SEM photograph showed that PP surface was etched by oxygen plasma at the thrid stage. These peel behaviors of Al/PP were explained by the chemical and physical changes of the PP surface caused by oxygen plasma treatment: (1) introduction of O-functional groups onto the PP surface at the initial stage, (2) formation of weak booundary layers resulting from the partial scission of PP molecules at the second stage, and (3) plasma etching of the PP surface at the third stage.  相似文献   

3.
本文利用强碱-阳极氧化法对钛片进行改性,制备TiO2薄膜;用扫描电镜(SEM)、X射线光电子能谱(XPS)考察了不同电解液浓度下氧化电压对TiO2氧化膜形貌及组成的影响。结果发现,在本实验条件下,该法制得的氧化膜是由三种钛氧化物组成的,主要成分是TiO2,此外还有低价钛氧化物Ti2O3及TiO;氧化电压的不同会对薄膜形貌产生重要的影响,当氧化电压较高时,氧化膜的厚度比较厚且致密;钛表面生成氧化膜大致过程可概括为:Ti→TiO→Ti2O3→TiO2,其中TiO转为为TiO2的几率依靠电势的大小及氧化时间的长短。  相似文献   

4.
A comparative study of the treatment of polytetrafluoroethylene (PTFE) and poly(vinyl fluoride) (PVF) with “Tetra-Etch” has been carried out. The treatment of PTFE resulted in extensive changes in surface chemistry and topography, whereas with PVF there was no significant change in topography and the chemical changes were much less marked. However, treatment of both polymers resulted in large increases in bond strength.

Multiple bonding experiments in which samples are repeatedly fractured and re-bonded were carried out with untreated PTFE and PVF. These resulted in moderate increases in bond strength with PTFE and large increases with PVF. The results indicate that weak boundary layer (WBL) removal is a key element in adhesion improvement by “Tetra-Etch” on PVF. With PTFE, WBL removal also improves adhesion, but the chemical and/or topographical changes introduced by the “Tetra-Etch” are required for optimum performance.  相似文献   

5.
A comparative study of the treatment of polytetrafluoroethylene (PTFE) and poly(vinyl fluoride) (PVF) with “Tetra-Etch” has been carried out. The treatment of PTFE resulted in extensive changes in surface chemistry and topography, whereas with PVF there was no significant change in topography and the chemical changes were much less marked. However, treatment of both polymers resulted in large increases in bond strength.

Multiple bonding experiments in which samples are repeatedly fractured and re-bonded were carried out with untreated PTFE and PVF. These resulted in moderate increases in bond strength with PTFE and large increases with PVF. The results indicate that weak boundary layer (WBL) removal is a key element in adhesion improvement by “Tetra-Etch” on PVF. With PTFE, WBL removal also improves adhesion, but the chemical and/or topographical changes introduced by the “Tetra-Etch” are required for optimum performance.  相似文献   

6.
Abstract

The purpose of this research was to evaluate the resin–dentin bond degradation in primary teeth after reducing the etching time. The dentin surfaces were bonded with: an etch and rinse adhesive (single bond-SB); a two step self-etching adhesive (Clearfil self etching bond-CSEB); and a one-step self-etching adhesive (one up bond F-OUB). For half the specimens, the recommended etching time was used (the manufacturer’s instructions); for the other half the etching time was reduced by 50%. The bonded teeth were divided according to different challenging procedures: (a) 24 h storage in distilled water and sectioned into beams (1.0 mm2); (b) immersion of the bonded beams in 10% NaOCl aqueous solution for 5 h; (c) load cycled (5000 cycles, 90 N) and then sectioned into beams. The micro-tensile bond strength (MTBS) was measured and fractographic analysis performed. The data were statistically analyzed using an analysis of variance (ANOVA) technique, together with multiple comparisons tests. The results showed that the OUB produced the lowest MTBS values, regardless of the challenging procedure. After NaOCl immersion, the MTBS decreased in all groups, with the Clearfil self etching bond (immersed for half the time) attained the highest MTBS. Following the instructions for each of the adhesive systems, after load cycling, no differences in MTBS were observed in the samples after 24 h. However when the etching time was shortened, a decrease in MTBS were observed for all groups. In conclusion, shortening the etching/conditioning time caused a significant change to the bond strength which was material dependent. The OUB produced the lowest bond strengths, regardless of other variables; and a reduced conditioning time resulted in an increased bond strength for CSEB adhesive.  相似文献   

7.
The aim of this study was to evaluate the microtensile bond strength of two all-in-one self-etch adhesives applied to sound and caries-affected dentin with four different application techniques. Forty extracted third molars with occlusal caries were randomly divided into four groups for G-Aenial Bond and S3 Bond: (1) according to manufacturer's instructions; (2) with acid etching before applying adhesives; (3) doubling adhesive application time; and (4) doubling adhesive coating. Teeth were sectioned to obtain 1-mm- ± 0.2-mm-thick dentin sticks and subjected to a tensile force. For G-Aenial Bond, doubling the time and application of two consecutive coats produced significantly higher strength than that obtained by following manufacturers' instructions and acid etching application to sound dentin. Prior acid etching and application of two consecutive coats to caries-affected dentin generated significantly higher bond strength than that using other techniques. For S3 Bond, there was no significant difference between application techniques in caries-affected dentin. For sound dentin, double-time application of S3 Bond produced significantly higher strength than application according to the manufacturers' instructions. Compared to the application according to manufacturer's instructions, acid etching before applying adhesives, doubling application time, and doubling the coating had a positive effect on bond strength to caries-affected dentin for all-in-one adhesives.  相似文献   

8.
This study intends to produce plasma polymer thin films of γ-glycidoxypropyltrimethoxysilane (γ-GPS) on glass fibers in order to improve interfacial adhesion of glass fiber-reinforced epoxy composites. A low frequency (LF) plasma generator was used for the plasma polymerization of γ-GPS on the surface of glass fibers at different plasma powers and exposure times. X-ray photoelectron spectroscopy (XPS) and SEM analyses of plasma polymerized glass fibers were conducted to obtain some information about surface properties of glass fibers. Interlaminar shear strength (ILSS) values and interfacial shear strength (IFSS) of composites reinforced with plasma polymerized glass fiber were evaluated. The ILSS and IFSS values of non-plasma polymerized glass fiber-reinforced epoxy composite were increased 110 and 53%, respectively, after plasma polymerization of γ-GPS at a plasma power of 60 W for 30 min. The improvement of interfacial adhesion was also confirmed by SEM observations of fractured surface of the composites.  相似文献   

9.
The aim of this study is to synthesize a hydrophobic surface coating with abrasion-resistant inorganic-organic hybrid materials. First, the copolymer of poly (MMA-co-MPTS)-colloid silica was synthesized by using the free radical polymerization of the methyl methacrylate (MMA) with γ-methacrylate propyltriethoxysilane (γ-MPTS). Next, the copolymer was hydrolyzed with tetraethoxylsilane (TEOS), fluoroalkylsilane (FAS), and colloid silica in the weak acid condition by a sol-gel process to obtain the surface coatings of hybrid material of poly (MMA-co-MPTS)-colloid silica. Finally, the effects of the colloid silica content on the optical properties, abrasion resistance, and morphology of the hybrid surface coatings were discussed in this study.  相似文献   

10.
Abstract

This study was aimed at deposition of self-assembled monolayers (SAMs) using vinyltriethoxysilane (VTES) and vinyltrichlorosilane (VTCS) molecules chemisorbed on silicon dioxide surfaces. The kinetics of SAM formation on planar glass substrates and silicon wafers was characterized by contact angle measurements. The surface free energy and its dispersion and polar components enabled to estimate the time of immersion required to deposit compact SAMs. Adsorption of organosilane molecules as a function of immersion time was characterized by X-ray photoelectron spectroscopy. The SAM thickness was evaluated by spectroscopic ellipsometry. Surface topography of deposited layers was investigated by atomic force microscopy (AFM). The VTCS/glass combination exhibited the fastest kinetics but the deposit was not uniform and included local agglomerates. The hydrophobic vinyl groups at deposit surface resulted in a surface free energy of 32 mJ/m2.  相似文献   

11.
The effect of reducing adhesion force by coating with a metal-containing diamond-like carbon (DLC) film has been studied by recording force–displacement curves with an atomic force microscope. A flat tip, a spherical tip, and some sharp tips were applied to mimic the different contact geometries. The results show that both under ambient conditions and in dry nitrogen, the DLC film can effectively reduce the adhesion force for different contact geometries. The reduction of the adhesion force was attributed to the decrease of the surface free energy and the increase of the contact angle for water. The reduction ratio of adhesion is closely related to contact geometry, the roughness of DLC film, material characteristics paired with DLC film and the environment. These factors are mutually coupled to determine the final reduction ratio. Under both conditions, the DLC film also plays a role in reducing the wear and tear when measuring the adhesion forces.  相似文献   

12.
Paint films although attached to a substrate on one side only may be subjected to stresses, comparable to those in structural adhesives. These stresses result from shrinkage during film formation and subsequent ageing, mechanical strains, relative thermal movements of film and substrate and from osmotic pressure due to soluble material under or within the film. The adhesive strength required to prevent detachment varies from very little for weak, highly porous coatings to 10,000 lb/in2 for tough coatings of high elastic modulus. Generally, adhesive strength both to the substrate and between coats in a paint system must exceed cohesive strength, under the conditions when failure is likely to develop. Dispersion and other forces, such as hydrogen bridging, between coatings and clean metal substrates should suffice to ensure adhesion but most practical surfaces carry contaminants, which interfere with wetting and intimacy of contact. Solvents and other low molecular weight components may also provide a weak interfacial layer, at least for a period after application. Modification of polymer structure to improve contaminant displacement and to increase polymer/substrate interaction forces, for example by the introduction of polar substituent or end groups will be discussed and potentialities of adhesion-promoting surface treatments reviewed.  相似文献   

13.
Atomic force microscopy with chemically functionalized colloidal probes was used to study “acid–base” interactions between poly(vinyl alcohol) (PVA) and a metal surface. By using well‐defined model surfaces, we have studied the adhesion forces between a hydroxylated surface and cantilever tips with varying hydroxyl content. Decreasing the amount of available hydroxyl groups dramatically reduced the observed adhesion force. The calculated bond energy for each cantilever tip was found to be in the range of typical hydrogen bond energies, i.e., 10–40 kJ/mol, suggesting that the acid–base interactions are predominately hydrogen bonding. Similarly, the force versus distance curves using PVA functionalized colloidal probes showed a strong dependence on the chemical functionality of the tip and the degree of acetylation of the intervening PVA. It was observed that, with an increase in the acetyl content of the PVA, the adhesion force decreased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3528–3534, 2006  相似文献   

14.
Lithium disilicate (LS2) has been a crucial parent composition for glass-ceramics since the 1950s because of its excellent chemical and physical durability. In addition, a wide range of electrical properties can be obtained by changing the composition and crystallinity. Bandgap energy is one of the critical electrical properties for designing new lithium silicate-based materials. In this study, the bandgap energy of a synthesized LS2 crystal is evaluated using electron energy-loss spectroscopy and X-ray photoelectron spectroscopy. These two techniques unambiguously establish that the bandgap energy of LS2 is 7.7-7.8 eV, which is in the vacuum ultraviolet region. This confirms the insulating nature of the LS2 crystal.  相似文献   

15.
In the last 25 years, surface sensitive analytical techniques have made a major contribution to our understanding of adhesion phenomena and problems. There are several areas where these techniques have provided important information including the identification of failure modes, the chemistry of a substrate before and after pretreatments, the stability of surfaces and interfaces, the identification of surface contaminants, the interaction across an interface and the nature of interphases. X-ray photoelectron spectroscopy (XPS or ESCA), Auger electron spectroscopy (AES) and static secondary ion mass spectrometry (SSIMS) have proved to be especially useful. Many examples of the usefulness of these techniques are given.  相似文献   

16.
A conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), was modified with dimethyl sulfoxide (DMSO) in solution state, together with sub-sequential thermal treatment of its spin-coated film. The electrical conductivity increased by more than three orders of magnitude improvement was achieved. The mechanism for the conductivity improvement was studied at nanoscale by particle size analysis, field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Smaller particle size was observed, resulting in larger contact area and better electrical conductive connections. Connection of conductive PEDOT increased on the surface of the PEDOT:PSS particles, which promoted high conductivity. Flexible anodes based on the modified PEDOT:PSS were fabricated. Flexible organic light-emitting diodes (FOLED) based the polymeric anodes have a comparable performance to those on indium–tin–oxide (ITO) anodes.  相似文献   

17.
The aim of the study was to evaluate the influence of thermocycling on the shear bond strength of self-adhesive, self-etching resin cements luted to human dentin and computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics. Three modern self-adhesive dental cements (Maxcem Elite, RelyX U200, Panavia SA) were used to lute three CAD/CAM ceramics (IPS Empress CAD, IPS e.max CAD, IPS e.max ZirCAD) onto the dentin. One conventional cement (Panavia V5) served as a control. After preparation, the samples were subjected to thermocycling as a method of artificial aging of dental materials applied to simulate long-term use in oral conditions. Shear bond strength was evaluated according to PN-EN ISO 29022:2013-10 and failure modes were observed under a light microscope. Statistical analysis was performed. The study demonstrated that a combination of ceramics and cements directly impacts the bond strength. The highest bond strength was observed in Panavia V5, lower in Panavia SA and Maxcem Elite and the lowest–in RelyX U200. Adhesive failure between human dentin and cements was the most common failure mode. Moreover, thermocycling highly decreased bond strength of self-adhesive, self-etching cements.  相似文献   

18.
19.
Under the applied high reaction temperatures (900 K) the Ag surface is restructured and a tightly held oxygen species is formed on the surface (O) apart from O atoms dissolved in the bulk (O). Methanol oxidation to formaldehyde proceeds through this O species as demonstrated by application of a variety of spectroscopic techniques.  相似文献   

20.
应用光谱分析技术研究榕树叶吸附铀的机理   总被引:1,自引:0,他引:1  
为了了解榕树叶吸附铀的过程机制,改善榕树叶吸附能力,提高铀的去除率,采用红外光谱仪、扫描电镜仪、X射线衍射仪、X射线光电子能谱仪等现代分析仪器探讨榕树叶吸附铀的机理。结果表明:榕树叶主要由碳水化合物、木质素及纤维素等组成,其吸收峰是由C=O的伸缩振动峰、苯环的骨架振动峰、苯羟基中C—O的伸缩振动峰构成;吸附UO22+后,榕树叶细胞的表面形态发生了改变,表面上分布的空隙和空洞减少,呈现出较多电子不透明的微小颗粒,相互黏合在一起,但没有形成新晶形结构,只是吸附过程中部分晶相转变为非晶相,其基本结构仍保持完整;因此榕树叶吸附铀的机理为表面络合吸附机理,UO22+主要与细胞表面上—OH、C=O、P—O及Si=O等基团螯合,形成配合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号