首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Checkpointing and rollback recovery are widely used techniques for handling failures in distributed systems. When processes involved in a distributed computation are allowed to take checkpoints independently without any coordination with each other, some or all of the checkpoints taken may not be part of any consistent global checkpoint, and hence, are useless for recovery. Communication-induced checkpointing algorithms allow processes to take checkpoints independently and also ensure that each checkpoint taken is part of a consistent global checkpoint by forcing processes to take some additional checkpoints. It is well known that it is impossible to design an optimal communication-induced checkpointing algorithm (i.e. a checkpointing algorithm that takes minimum number of forced checkpoints). So, researchers have designed communication-induced checkpointing algorithms that reduce forced checkpoints using different heuristics. In this paper, we present a communication-induced checkpointing algorithm which takes less number of forced checkpoints when compared to some of the existing checkpointing algorithms in its class.  相似文献   

2.
Summary. A useless checkpoint is a local checkpoint that cannot be part of a consistent global checkpoint. This paper addresses the following problem. Given a set of processes that take (basic) local checkpoints in an independent and unknown way, the problem is to design communication-induced checkpointing protocols that direct processes to take additional local (forced) checkpoints to ensure no local checkpoint is useless. The paper first proves two properties related to integer timestamps which are associated with each local checkpoint. The first property is a necessary and sufficient condition that these timestamps must satisfy for no checkpoint to be useless. The second property provides an easy timestamp-based determination of consistent global checkpoints. Then, a general communication-induced checkpointing protocol is proposed. This protocol, derived from the two previous properties, actually defines a family of timestamp-based communication-induced checkpointing protocols. It is shown that several existing checkpointing protocols for the same problem are particular instances of the general protocol. The design of this general protocol is motivated by the use of communication-induced checkpointing protocols in “consistent global checkpoint”-based distributed applications such as the detection of stable or unstable properties and the determination of distributed breakpoints. Received: July 1997 / Accepted: August 1999  相似文献   

3.
Checkpointing algorithms are classified as synchronous and asynchronous in the literature. In synchronous checkpointing, processes synchronize their checkpointing activities so that a globally consistent set of checkpoints is always maintained in the system. Synchronizing checkpointing activity involves message overhead and process execution may have to be suspended during the checkpointing coordination, resulting in performance degradation. In asynchronous checkpointing, processes take checkpoints without any coordination with others. Asynchronous checkpointing provides maximum autonomy for processes to take checkpoints; however, some of the checkpoints taken may not lie on any consistent global checkpoint, thus making the checkpointing efforts useless. Asynchronous checkpointing algorithms in the literature can reduce the number of useless checkpoints by making processes take communication induced checkpoints besides asynchronous checkpoints. We call such algorithms quasi-synchronous. In this paper, we present a theoretical framework for characterizing and classifying such algorithms. The theory not only helps to classify and characterize the quasi-synchronous checkpointing algorithms, but also helps to analyze the properties and limitations of the algorithms belonging to each class. It also provides guidelines for designing and evaluating such algorithms  相似文献   

4.
A checkpoint of a process involved in a distributed computation is said to be useful if it is part of a consistent global checkpoint. In this paper, we present a quasi-synchronous checkpointing algorithm that makes every checkpoint useful. We also present an efficient asynchronous recovery algorithm based on the checkpointing algorithm. The checkpointing algorithm allows the processes to take checkpoints asynchronously and also forces the processes to take additional checkpoints in order to make every checkpoint useful. The recovery algorithm can handle concurrent failure of multiple processes. The recovery algorithm has no domino effect and a failed process needs only to roll back to its latest checkpoint and request the other processes to roll back to a consistent checkpoint. Messages are only selectively logged to cope with various types of message abnormalities that arise due to rollback and hence results in low message logging overhead. Unlike some existing algorithms, our algorithm does not use vector timestamps for tracking dependency between checkpoints and hence results in low message overhead during failure-free operation. Moreover, a process can asynchronously decide garbage checkpoints and delete them from the stable storage—garbage checkpoints are the checkpoints that are no longer required for the purpose of recovery.  相似文献   

5.
基于检测点设置依赖图和属性表的卷回恢复算法   总被引:2,自引:0,他引:2  
为了解决检测点设置过程中的Domino效应问题及卷回恢复过程中的活锁问题,并最大限度地减小时间开销,提出了基于检测点设置依赖图和属性表的卷回恢复算法。同以前的算法相比较,该算法一方面节省了用于进程之间同步的时间开销,另一方面检测点设置及卷回过程中涉及少量的相关进程。对该算法的正确性进行了证明。  相似文献   

6.
Coordinated checkpointing simplifies failure recovery and eliminates domino effects in case of failures by preserving a consistent global checkpoint on stable storage. However, the approach suffers from high overhead associated with the checkpointing process. Two approaches are used to reduce the overhead: first is to minimize the number of synchronization messages and the number of checkpoints, the other is to make the checkpointing process nonblocking. These two approaches were orthogonal in previous years until the Prakash-Singhal algorithm combined them. In other words, the Prakash-Singhal algorithm forces only a minimum number of processes to take checkpoints and it does not block the underlying computation. However, we found two problems in this algorithm. In this paper, we identify these problems and prove a more general result: there does not exist a nonblocking algorithm that forces only a minimum number of processes to take their checkpoints. Based on this general result, we propose an efficient algorithm that neither forces all processes to take checkpoints nor blocks the underlying computation during checkpointing. Also, we point out future research directions in designing coordinated checkpointing algorithms for distributed computing systems  相似文献   

7.
支持分布式合作实时事务处理的协同检验点方法   总被引:1,自引:0,他引:1  
在实时事务执行时,事务故障或数据竞争会导致事务重启,为减少事务重启损失的工作量,可以采用检验点技术保证事务的时间正确性.在一类分布式实时数据库应用中,不同结点的事务通过消息交换形成合作关系,为保证合作事务间的全局一致性,当某一事务记检验点时,相关事务也要记检验点.传统协同检验点方法没有考虑应用的定时约束,不能很好地支持分布式合作实时事务处理.该文提出了一种基于图论的协同检验点方法,利用在每个计算结点上为每个合作事务集维护的局部有向图,使用一个基于图论的计算过程标识出应记检验点的事务,该方法既具有最小协同检验点特性,又使全局检验点的时延最小.实验表明该算法减少了全局检验点时延,有利于实时事务截止期的满足.  相似文献   

8.
A consistent checkpointing algorithm saves a consistent view of a distributed application's state on stable storage. The traditional consistent checkpointing algorithms require different processes to save their state at about the same time. This causes contention for the stable storage, potentially resulting in large overheads. Staggering the checkpoints taken by various processes can reduce checkpoint overhead. This paper presents a simple approach to arbitrarily stagger the checkpoints. Our approach requires that the processes take consistent logical checkpoints, as compared to consistent physical checkpoints enforced by existing algorithms. Experimental results on nCube-2 are presented  相似文献   

9.
Checkpointing and rollback recovery are widely used techniques for achieving fault-tolerance in distributed systems. In this paper, we present a novel checkpointing algorithm which has the following desirable features: A process can independently initiate consistent global checkpointing by saving its current state, called a tentative checkpoint. Other processes come to know about a consistent global checkpoint initiation through information piggy-backed with the application messages or limited control messages if necessary. When a process comes to know about a new consistent global checkpoint initiation, it takes a tentative checkpoint after processing the message (not before processing the message as in existing communication-induced checkpointing algorithms). After a process takes a tentative checkpoint, it starts logging the messages sent and received in memory. When a process comes to know that every other process has taken a tentative checkpoint corresponding to current consistent global checkpoint initiation, it flushes the tentative checkpoint and the message log to the stable storage. The tentative checkpoints together with the message logs stored in the stable storage form a consistent global checkpoint. Two or more processes can concurrently initiate consistent global checkpointing by taking a new tentative checkpoint; in that case, the tentative checkpoints taken by all these processes will be part of the same consistent global checkpoint. The sequence numbers assigned to checkpoints by a process increase monotonically. Checkpoints with the same sequence number form a consistent global checkpoint. We also present the performance evaluation of our algorithm.  相似文献   

10.
Mobile computing raises many new issues such as lack of stable storage, low bandwidth of wireless channel, high mobility, and limited battery life. These new issues make traditional checkpointing algorithms unsuitable. Coordinated checkpointing is an attractive approach for transparently adding fault tolerance to distributed applications since it avoids domino effects and minimizes the stable storage requirement. However, it suffers from high overhead associated with the checkpointing process in mobile computing systems. Two approaches have been used to reduce the overhead: First is to minimize the number of synchronization messages and the number of checkpoints; the other is to make the checkpointing process nonblocking. These two approaches were orthogonal previously until the Prakash-Singhal algorithm combined them. However, we found that this algorithm may result in an inconsistency in some situations and we proved that there does not exist a nonblocking algorithm which forces only a minimum number of processes to take their checkpoints. In this paper; we introduce the concept of “mutable checkpoint,” which is neither a tentative checkpoint nor a permanent checkpoint, to design efficient checkpointing algorithms for mobile computing systems. Mutable checkpoints can be saved anywhere, e.g., the main memory or local disk of MHs. In this way, taking a mutable checkpoint avoids the overhead of transferring large amounts of data to the stable storage at MSSs over the wireless network. We present techniques to minimize the number of mutable checkpoints. Simulation results show that the overhead of taking mutable checkpoints is negligible. Based on mutable checkpoints, our nonblocking algorithm avoids the avalanche effect and forces only a minimum number of processes to take their checkpoints on the stable storage  相似文献   

11.
现有的协同检验点方法在移动环境中会带来较大的检验点过程延时 ,不能很好地支持实时事务处理 .提出了一种新的协同并行检验点方法 ,在正常的消息传输过程中 ,通过一点额外的带宽传送事务间检验点依赖关系 ;在某一事务记检验点时 ,尽可能地同时通知相关的事务记检验点 .实验表明 ,该算法对网络带宽没有明显的增加 ,而能大大降低事务记检验点的延时 ,使系统中超截止期的事务比例大大降低  相似文献   

12.
Checkpointing and rollback recovery are well-known techniques for handling failures in distributed systems. The issues related to the design and implementation of efficient checkpointing and recovery techniques for distributed systems have been thoroughly understood. For example, the necessary and sufficient conditions for a set of checkpoints to be part of a consistent global checkpoint has been established for distributed computations. In this paper, we address the analogous question for distributed database systems. In distributed database systems, transaction-consistent global checkpoints are useful not only for recovery from failure but also for audit purposes. If each data item of a distributed database is checkpointed independently by a separate transaction, none of the checkpoints taken may be part of any transaction-consistent global checkpoint. However, allowing individual data items to be checkpointed independently results in non-intrusive checkpointing. In this paper, we establish the necessary and sufficient conditions for the checkpoints of a set of data items to be part of a transaction-consistent global checkpoint of the distributed database. Such conditions can also help in the design and implementation of non-intrusive checkpointing algorithms for distributed database systems.  相似文献   

13.
许多数据和活动上都有很强时间性的应用在地理上同时具有分布性,这种应用需求使得分布式实时数据库的研完成为数据库研究领域的热点。在实时事务执行时,事务故障或数据竞争会导致事务重启,为了减少因重启而损失的工作量,可以采用检验点技术以利于事务时间正确性的满足。在一些分布式实时数据库应用中,不同结点的事务通过消息交换形成合作关系,当某一事务记检验点时,为保证合作事务间的全局一致性,相关事务也要相应地记检验点。传统的协同检验点方法没有考虑应用的定时约束,不能很好地支持分布式实时事务处理。本文提出了一种高效的并行协同检验点方法,该算法既具有最小协同检验点特性又使全局检验点过程延时最小。实验表明该算法减少了全局检验点阻塞时间,有利于分布式实时事务截止期的满足。  相似文献   

14.
This paper presents an index-based checkpointing algorithm for distributed systems with the aim of reducing the total number of checkpoints while ensuring that each checkpoint belongs to at least one consistent global checkpoint (or recovery line). The algorithm is based on an equivalence relation defined between pairs of successive checkpoints of a process which allows us, in some cases, to advance the recovery line of the computation without forcing checkpoints in other processes. The algorithm is well-suited for autonomous and heterogeneous environments, where each process does not know any private information about other processes and private information of the same type of distinct processes is not related (e.g., clock granularity, local checkpointing strategy, etc.). We also present a simulation study which compares the checkpointing-recovery overhead of this algorithm to the ones of previous solutions  相似文献   

15.
基于索引的分布式检查点算法利用了Lamport逻辑时钟的思想来保证形成全局一致性检查点(或者恢复线)。作为一种准同步方法,基于索引的检查点算法具有异步检查点算法的灵活性,且能像同步算法一样避免多米诺效应。本文在著名的BCS算法的基础上提出了一种减少基本检查点数目的优化策略--重新计时法。最后,通过模拟实验证明了这种改进策略的有效性。  相似文献   

16.
Considering a checkpoint and communication pattern, the rollback-dependency trackability (RDT) property stipulates that there is no hidden dependency between local checkpoints. In other words, if there is a dependency between two checkpoints due to a noncausal sequence of messages (Z-path), then there exists a causal sequence of messages (C-path) that doubles the noncausal one and that establishes the same dependency.This paper introduces the notion of RDT-compliance. A property defined on Z-paths is RDT-compliant if the causal doubling of Z-paths having this property is sufficient to ensure RDT. Based on this notion, the paper provides examples of such properties. Moreover, these properties are visible, i.e., they can be tested on the fly. One of these properties is shown to be minimal with respect to visible and RDT-compliant properties. In other words, this property defines a minimal visible set of Z-paths that have to be doubled for the RDT property to be satisfied.Then, a family of communication-induced checkpointing protocols that ensure on-the-fly RDT properties is considered. Assuming processes take local checkpoints independently (called basic checkpoints), protocols of this family direct them to take on-the-fly additional local checkpoints (called forced checkpoints) in order that the resulting checkpoint and communication pattern satisfies the RDT property. The second contribution of this paper is a new communication-induced checkpointing protocol . This protocol, based on a condition derived from the previous characterization, tracks a minimal set of Z-paths and breaks those not perceived as being doubled. Finally, a set of communication-induced checkpointing protocols are derived from . Each of these derivations considers a particular weakening of the general condition used by . It is interesting to note that some of these derivations produce communication-induced checkpointing protocols that have already been proposed in the literature.  相似文献   

17.
Consistent global checkpoints have many uses in distributed computations. A central question in applications that use consistent global checkpoints is to determine whether a consistent global checkpoint that includes a given set of local checkpoints can exist. Netzer and Xu (1995) presented the necessary and sufficient conditions under which such a consistent global checkpoint can exist, but they did not explore what checkpoints could be constructed. In this paper, we prove exactly which local checkpoints can be used for constructing such consistent global checkpoints. We illustrate the use of our results with a simple and elegant algorithm to enumerate all such consistent global checkpoints  相似文献   

18.
《Theoretical computer science》2003,290(2):1127-1148
There are two approaches to reduce the overhead associated with coordinated checkpointing: first is to minimize the number of synchronization messages and the number of checkpoints; the other is to make the checkpointing process non-blocking. In our previous work (IEEE Parallel Distributed Systems 9 (12) (1998) 1213), we proved that there does not exist a non-blocking algorithm which forces only a minimum number of processes to take their checkpoints. In this paper, we present a min-process algorithm which relaxes the non-blocking condition while tries to minimize the blocking time, and a non-blocking algorithm which relaxes the min-process condition while minimizing the number of checkpoints saved on the stable storage. The proposed non-blocking algorithm is based on the concept of “mutable checkpoint”, which is neither a tentative checkpoint nor a permanent checkpoint. Based on mutable checkpoints, our non-blocking algorithm avoids the avalanche effect and forces only a minimum number of processes to take their checkpoints on the stable storage.  相似文献   

19.
Checkpointing a database is a vital technique to reduce the recovery time in the presence of a failure. For distributed databases, checkpointing also provides an efficient way to perform global reconstruction. In this paper, we survey and classify previous approaches for checkpointing a distributed database. Since the need for global reconstruction is infrequent in most distributed databases, a less restrictive and less resource-consuming approach to checkpoint distributed databases in an integrated distributed database system is recommended over a transaction consistent checkpoint approach. For a federated or multidatabase system, any type of global consistent checkpoint is difficult to achieve without violating local autonomy.  相似文献   

20.
We consider the problem of bringing a distributed system to a consistent state after transient failures. We address the two components of this problem by describing a distributed algorithm to create consistent checkpoints, as well as a rollback-recovery algorithm to recover the system to a consistent state. In contrast to previous algorithms, they tolerate failures that occur during their executions. Furthermore, when a process takes a checkpoint, a minimal number of additional processes are forced to take checkpoints. Similarly, when a process rolls back and restarts after a failure, a minimal number of additional processes are forced to roll back with it. Our algorithms require each process to store at most two checkpoints in stable storage. This storage requirement is shown to be minimal under general assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号