首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
通过控制泥龄实现亚硝酸盐型同步硝化反硝化   总被引:8,自引:0,他引:8  
采用序批式活性污泥法处理人工配制的城市生活污水,通过控制泥龄成功地实现了亚硝酸盐型同步硝化反硝化,曝气过程中NO2^-N/NOx^-N值始终保持在84.48%以上,曝气结束时大约有80.39%的氨氮通过同步硝化反硝化途径被去除。在适宜的曝气量下,利用排泥的方法控制反应器内适宜的泥龄,可以实现稳定的亚硝酸盐型同步硝化反硝化。  相似文献   

2.
新型生物脱氮工艺--OLAND工艺   总被引:5,自引:0,他引:5  
OLAND工艺是基于亚硝酸型硝化-厌氧氨氧化脱氮技术而开发的生物脱氮新工艺.该工艺首先采用限制溶解氧浓度实现氨氮的部分亚硝化并实现亚硝酸盐氮的浓度积累,接着进行厌氧氨氧化反应,从而达到去除含氮污染物的目的.与传统生物脱氮工艺相比,该工艺具有耗氧量少、污泥产量少、不需外加碳源等优点.  相似文献   

3.
Ruiz G  Jeison D  Chamy R 《Water research》2003,37(6):1371-1377
The objective of this paper was to determine the best conditions for partial nitrification with nitrite accumulation of simulated industrial wastewater with high ammonia concentration, lowering the total oxygen needed in the nitrification step, which may mean great saving in aeration. Dissolved oxygen (DO) concentration and pH were selected as operational parameters to study the possibility of nitrite accumulation not affecting overall ammonia removal. A 2.5L activated sludge reactor was operated in nitrification mode, feeding a synthetic wastewater simulating an industrial wastewater with high ammonia concentration. During the start-up a pH of 7.85 and a DO of 5.5mg/L were used. The reactor was operated until stable operation was achieved at final nitrogen loading rate (NLR) of 3.3kgN- NH(4)(+)/m(3)d with an influent ammonia concentration of 610mg N-NH(4)(+)/L.The influence of pH was studied in continuous operation in the range of 6.15-9.05, changing the reactor pH in steps until ammonia accumulation (complete nitrification inhibition) took place. The influence of DO was studied in the same mode, changing the DO in steps from 5.5 to 0.5mg/L.The pH was not a useful operational parameter in order to accumulate nitrite, because in the range of pH 6.45-8.95 complete nitrification to nitrate occurs. At pH lower than 6.45 and higher than 8.95 complete inhibition of nitrification takes place. Setting DO concentration in the reactor at 0.7mg/L, it was possible to accumulate more than 65% of the loaded ammonia nitrogen as nitrite with a 98% ammonia conversion. Below 0.5mg/L of DO ammonia was accumulated and over a DO of 1.7mg/L complete nitrification to nitrate was achieved.In conclusion, it is possible under the conditions of this study, to treat high ammonia synthetic wastewater achieving an accumulation of at least 65% of the loaded nitrogen as nitrite, operating at a DO around 0.7mg/L. This represents a reduction close to 20% in the oxygen necessary, and therefore a considerable saving in aeration.  相似文献   

4.
Nitrous oxide (N2O) is an important greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment, microbial processes such as autotrophic nitrification and heterotrophic denitrification have been identified as major sources; however, the underlying pathways remain unclear. In this study, the mechanisms of N2O production were investigated in a laboratory batch-scale system with activated sludge for treating municipal wastewater. This relatively complex mixed population system is well representative for full-scale activated sludge treatment under nitrifying and denitrifying conditions.Under aerobic conditions, the addition of nitrite resulted in strongly nitrite-dependent N2O production, mainly by nitrifier denitrification of ammonia-oxidizing bacteria (AOB). Furthermore, N2O is produced via hydroxylamine oxidation, as has been shown by the addition of hydroxylamine. In both sets of experiments, N2O production was highest at the beginning of the experiment, then decreased continuously and ceased when the substrate (nitrite, hydroxylamine) had been completely consumed. In ammonia oxidation experiments, N2O peaked at the beginning of the experiment when the nitrite concentration was lowest. This indicates that N2O production via hydroxylamine oxidation is favored at high ammonia and low nitrite concentrations, and in combination with a high metabolic activity of ammonia-oxidizing bacteria (at 2 to 3 mgO2/l); the contribution of nitrifier denitrification by AOB increased at higher nitrite and lower ammonia concentrations towards the end of the experiment.Under anoxic conditions, nitrate reducing experiments confirmed that N2O emission is low under optimal growth conditions for heterotrophic denitrifiers (e.g. no oxygen input and no limitation of readily biodegradable organic carbon). However, N2O and nitric oxide (NO) production rates increased significantly in the presence of nitrite or low dissolved oxygen concentrations.  相似文献   

5.
异养硝化菌的分离及其强化活性污泥脱氮效果   总被引:5,自引:0,他引:5  
为提高水处理过程中的脱氮率,实现好氧条件下对总氮的去除。通过试验分离出一株异养硝化菌,该菌株为白色革兰氏阴性球状菌。将该菌扩大培养后接种于活性污泥系统并进行了处理模拟废水的试验。结果表明:该菌能在好氧条件下分别代谢氨氮、亚硝酸盐氮、硝酸盐氮,并通过好氧反硝化实现对总氮的去除。用该菌株强化的活性污泥系统对以氨氮、亚硝酸盐氮、硝酸盐氮为惟一氮源的模拟废水进行处理,4h的总氮去除率分别为85%、60%、70%。  相似文献   

6.
You SJ  Hsu CL  Chuang SH  Ouyang CF 《Water research》2003,37(10):2281-2290
This study makes a comparison between the nitrification performance of TNCU-I (a combined activated sludge-rotating biological contactor process) and A2O systems by the use of a pilot plant and batch experiments. The nitrifier abundance in both systems was determined, using cloning-denaturing gradient gel electrophoresis (DGGE) and fluorescent in-situ hybridization (FISH), to investigate the role of rotating biological contactor in the TNCU-I process. The stability of the nitrification performance and the specific nitrification rate were found to be greater in TNCU-I system than in the A2O system. RBC biofilm promoted nitrifying activity that contributed to the nitrification performance, especially at a low SRT. By using the cloning-DGGE method, the genera Nitrosospira and Nitrospira were found to be present in all the samples, while the genus Nitrosomonas was observed only in the TNCU-I RBC biofilm. In addition, the proportions of ammonia oxidizer in the TNCU-I RBC biofilm, the TNCU-I activated sludge and the A2O activated sludge were 11.4%, 13.2%, and 4.1%, respectively, higher than the nitrite oxidizer fractions of 3.3%, 5.7% and 2.1%, respectively, according to the cloning-DGGE method. On the other hand, the proportions of ammonia oxidizers in the afore-mention materials were 10.3%, 13.7%, and 5.2%, higher than the nitrite oxidizer fractions of 2.5%, 3.6% and 2.3%, according to the FISH experiments. This implies that the proportion of ammonia oxidizer in the TNCU-I process was 3.2 and 2.6 times that in the A2O process, determined by the cloning-DGGE and FISH methods, respectively. These amounts are also close to the ammonia oxidization rate of 2.9 times. All the data show that RBC added to the aerobic zone of TNCU-I process would increase the nitrifier abundance and enhance the nitrification performance of the system.  相似文献   

7.
In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers.  相似文献   

8.
Downing LS  Nerenberg R 《Water research》2008,42(14):3697-3708
The hybrid (suspended and attached growth) membrane biofilm process (HMBP) is a novel method to achieve total nitrogen removal from wastewater. Air-filled hollow-fiber membranes are incorporated into an activated sludge tank, and a nitrifying biofilm develops on the membranes, producing nitrite and nitrate. By suppressing bulk aeration, the bulk liquid becomes anoxic, and the nitrate/nitrite can be reduced with influent BOD. The key feature that distinguishes the HMBP from other membrane-aerated processes is that it is hybrid; heterotrophic bacteria are kept mainly in suspension by maintaining low bulk liquid BOD concentrations. We investigated the HMBP's performance under a variety of BOD and ammonium loadings, and determined the dominant mechanisms of nitrogen removal. Suspended solids increased with the BOD loadings, maintaining low bulk liquid BOD concentrations. As a result, nitrification rates were insensitive to the BOD loadings, remaining at 1gNm(-2)day(-1) for BOD loadings ranging from 4 to 17gBODm(-2)day(-1). Nitrification rates decreased during short-term spikes in bulk liquid BOD concentrations. Shortcut nitrogen removal was confirmed using microsensor measurements, showing that nitrite was the dominant form of oxidized nitrogen produced by the biofilm. Fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) were dominant throughout the biofilm, while nitrite oxidizing bacteria (NOB) were only present in the deeper regions of the biofilm, where the oxygen concentration was above 2mg/L. Denitrification occurred mainly in the suspended phase, instead of in the biofilm, decreasing the potential for biofouling. When influent BOD concentrations were sufficiently high, full denitrification occurred, with total nitrogen (TN) removal approaching 100%. These results suggest that the process is well-suited for achieving concurrent BOD and TN removal in activated sludge.  相似文献   

9.
The release of nanoparticles (NPs) into the environment, including wastewater treatment plants, is expected to increase in the future. Therefore, it is important to understand the potential effects of these NPs on activated sludge treatment processes. A pulse-flow respirometer was used to study the toxicity of nano-ZnO on activated sludge endogenous respiration, BOD biodegradation, and nitrification. In addition, toxicities of bulk ZnO particles and Zn ion (e.g. soluble Zn) were also studied. All three Zn forms were found to adversely impact the activity of activated sludge, with soluble Zn exhibited the greatest toxicity. The effects of nano-ZnO and bulk ZnO on activated sludge were caused by soluble Zn resulting from ZnO particle dissolution. The IC50 values of soluble Zn on activated sludge endogenous respiration, BOD biodegradation, ammonia oxidation, and nitrite oxidation were 2.2, 1.3, 0.8, and 7.3 mg-Zn/L, respectively. Therefore, the first step of nitrification was most sensitive to Zn.  相似文献   

10.
Kim YM  Cho HU  Lee DS  Park D  Park JM 《Water research》2011,45(17):5785-5795
To improve the efficiency of total nitrogen (TN) removal, solid retention time (SRT) and internal recycling ratio controls were selected as operating parameters in a full-scale activated sludge process treating high strength industrial wastewater. Increased biomass concentration via SRT control enhanced TN removal. Also, decreasing the internal recycling ratio restored the nitrification process, which had been inhibited by phenol shock loading. Therefore, physiological alteration of the bacterial populations by application of specific operational strategies may stabilize the activated sludge process. Additionally, two dominant ammonia oxidizing bacteria (AOB) populations, Nitrosomonas europaea and Nitrosomonas nitrosa, were observed in all samples with no change in the community composition of AOB. In a nitrification tank, it was observed that the Nitrobacter populations consistently exceeded those of the Nitrospira within the nitrite oxidizing bacteria (NOB) community. Through using quantitative real-time PCR (qPCR), nirS, the nitrite reducing functional gene, was observed to predominate in the activated sludge of an anoxic tank, whereas there was the least amount of the narG gene, the nitrate reducing functional gene.  相似文献   

11.
Micro-profiles of activated sludge floc determined using microelectrodes   总被引:8,自引:0,他引:8  
Li B  Bishop PL 《Water research》2004,38(5):1248-1258
The microbial activity within activated sludge floc is a key factor in the performance of the activated sludge process. In this study, the microenvironment of activated sludge flocs from two wastewater treatment plants (Mill Creek Wastewater Treatment Plant and Muddy Creek Wastewater Treatment Plant, with aeration tank influent CODs of 60-120 and 15-35 mg/L, respectively) were studied by using microelectrodes. Due to microbial oxygen utilization, the aerobic region in the activated sludge floc was limited to the surface layer (0.1-0.2mm) of the sludge aggregate at the Mill Creek plant. The presence of an anoxic zone inside the sludge floc under aerobic conditions was confirmed in this study. When the dissolved oxygen (DO) in the bulk liquid was higher than 4.0mg/L, the anoxic zone inside the activated sludge floc disappeared, which is helpful for biodegradation. At the Muddy Creek plant, with its lower wastewater pollutant concentrations, the redox potential and DO inside the sludge aggregates were higher than those at the Mill Creek plant. The contaminant concentration in the bulk wastewater correlates with the oxygen utilization rate, which directly influences the oxygen penetration inside the activated sludge floc, and results in redox potential changes within the floc. The measured microprofiles revealed the continuous decrease of nitrate concentration inside the activated sludge floc, even though significant nitrification was observed in the bulk wastewater. The oxygen consumption and nitrification rate analyses reveal that the increase of ammonia flux under aerobic conditions correlates with nitrification. Due to the metabolic mechanisms of the microorganisms in activated sludge floc, which varies from one treatment plant to another, the oxygen flux inside the sludge floc changes accordingly.  相似文献   

12.
通过考察活性污泥硝化作用、微观结构以及微生物群落结构的变化,研究甲氧苄啶(TMP)对好氧活性污泥的长期影响。结果表明,长期运行过程中不同浓度的TMP均对氨氮的去除有抑制作用,但该抑制作用是可逆的,在25 d后可恢复到高效去除氨氮水平。连续运行30 d后的典型周期试验发现,在不同TMP浓度下,硝化性能在周期内依旧受到一定程度的抑制,但在周期结束时氨氮均能得到稳定去除;此外,在10 mg/L的高浓度TMP条件下,亚硝态氮会出现积累。扫描电镜观察发现,随着TMP浓度的升高,污泥絮体破裂程度加剧,污泥颗粒变小。微生物群落结构分析表明,优势菌群中放线菌门相比拟杆菌门对TMP有更强的耐受性,另外,硝化螺旋菌门对TMP有较强的耐受性,随着TMP浓度的升高,硝化螺旋菌门的相对丰度从0. 84%升高至1. 60%;属水平上,TMP对Flavobacterium菌属的抑制最明显。  相似文献   

13.
For many years, calorimetric measurements have been used for understanding, modelling, controlling, and optimising chemical reactions. Calorimetry could be as well utilised to investigate biological processes, which however, involve very small amount of heat and therefore require very sensitive instruments. For this purpose, a Mettler Toledo RCI (Reaction calorimeter) was modified, changing both hardware and software, increasing its resolution up to 5 10m W/l. Such sensitivity allows the monitoring of aerobic and anoxic processes. This paper points out the excellent agreement between calorimetric and respirometric data, obtained simultaneously under aerobic conditions using activated sludge from a lab-scale scale reactor. Heat production rate can be directly converted in oxygen uptake rate by means of a correlation factor, whose value is approximately the same for all aerobic respiratory metabolisms. Taking into account this factor, calorimetric data were introduced in a chemical oxygen demand based model and processed for the estimation of kinetic parameters of heterotrophic biomass. Aerobic heterotrophic, denitrifying, and autotrophic nitrifying activity were determined by specific calorimetric tests. The effect of potentially toxic or inhibitory substances on the activity of all microbial communities was as well pointed out in these measurements.  相似文献   

14.
Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process.  相似文献   

15.
城市污水短程硝化的实现途径   总被引:2,自引:0,他引:2  
曾广德 《供水技术》2009,3(1):23-26
探讨了影响废水中亚硝酸盐积累的三大主要因素:溶解氧、温度和pH。针对常温低氨氮城市污水,从理论上分析了以活性污泥法和生物膜法的形式进行亚硝化的启动方法和运行策略,为短程硝化/厌氧氨氧化工艺在城市污水处理中的应用提供了可借鉴的研究基础。  相似文献   

16.
Faced with the need to improve ammonia removal from lagoon wastewater treatment plants (WWTPs) operated in Quebec, Canada, mechanistic modelling has been proposed as a tool for explaining the seasonal nitrification phenomenon and to evaluate optimization and upgrade scenarios. A lagoon model that includes a modified activated sludge biokinetic model and that assumes completely mixed conditions in the water column and sediments has been applied to simulate 3 years of consecutive effluent data for a lagoon from the Drummondville WWTP. Successful prediction of results from this plant indicates that the seasonal nitrification is determined by temperature, dissolved oxygen (DO) concentrations, hydraulic retention time (HRT) of the water column and washout driven by a well-mixed water column. Results also indicate that sediments contribute to the ammonia load in the lagoon effluent, particularly in spring and early summer. Sensitivity analyses performed with the model indicate that the nitrification period could be prolonged by increasing DO concentrations in the lagoon and that bioaugmentation would be particularly effective in spring and early summer. Limitations of the model are discussed, as well as ways to improve the hydraulic model.  相似文献   

17.
废水生物脱氮新工艺研究进展   总被引:1,自引:0,他引:1  
朱霞  赵宗升 《山西建筑》2008,34(2):185-186
对生物脱氮新工艺进行了较全面的综述,分析了影响NO2-N积累的主要因素为游离氨、pH值、温度、溶解氧、污泥龄和有害物质,主要介绍了短程硝化反硝化、厌氧氨氧化和CANON等生物脱氮新工艺的微生物学原理,研究应用现状、发展前景以及存在的问题。  相似文献   

18.
19.
研究了分别填充堆肥和污泥的生物滤塔对含三甲胺气体的处理能力.结果表明,两种生物滤塔均能有效处理含三甲胺的气体,对三甲胺的去除率几乎达到了100%,三甲胺被生物降解并生成氨.堆肥生物滤塔各段填料中的硝态氮含量随时间的延长呈显著提高的趋势,但pH值出现下降,说明其中发生了氨的硝化作用.而在污泥生物滤塔中,随着氨的积累则各填料层的pH值迅速升高,并且没有观察到亚硝态氮以及硝态氮含量的增加,因此其不具备进一步降解氨的能力.  相似文献   

20.
Attempts were made for removing ammonia from synthetic wastewater under the presence of phenol, which is inhibitory to nitrification, by using a single-stage activated sludge process with cross-flow filtration. Activated sludge biomass which had been acclimated with phenol for over 15 years was used for the inoculum, and synthetic wastewater was continuously supplied to the process retaining biomass at 8000 mg VSS l(-1). Phenol was completely removed, and ammonia was simultaneously nitrified to nitrate; nitrification rate reached 200 mg N l(-1) d(-1) when phenol was removed at a rate up to 300 mg l(-1) d(-1). It was observed that 0-13% of the ammonia was removed via denitrification. Intermittent aeration enhanced the denitrification rate to 160 mg N l(-1) d(-1) by utilizing phenol. and approximately 24% of the denitrified nitrogen was recovered as nitrous oxide. Methanol, which is the most commonly used electron donor in conventional nitrogen removal processes, did not enhance the denitrification rate of the phenol-acclimated activated sludge used in this study, however phenol did. The results suggest that this process potentially works as a space- and energy-saving nitrogen removal process by utilizing substances inhibitory to nitrifiers as electron donors for denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号