首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to select lactic acid bacteria (LAB) strains isolated from silage and assess their effect on the quality of maize silage. The LAB strains were inoculated into aqueous extract obtained from maize to evaluate their production of metabolites and pH reduction. The ability to inhibit the pathogenic and silage-spoilage microorganisms’ growth was evaluated. Nine LAB strains that showed the best results were assessed in polyvinyl chloride experimental silos. The inoculation of the LAB strains influenced the concentration of lactic and acetic acids and the diversity of Listeria. The inoculation of silages with Lactobacillus buchneri (UFLA SLM11 and UFLA SLM103 strains) resulted in silages with greater LAB populations and improvements after aerobic exposure. The UFLA SLM11 and SLM103 strains identified as L. buchneri showed to be promising in the treatment of maize silage.  相似文献   

2.
The objective of this study was to determine the effect of beet pulp (BP) and lactic acid bacteria (LAB) on silage fermentation quality and in vitro ruminal dry matter (DM) digestion of vegetable residues, including white cabbage, Chinese cabbage, red cabbage, and lettuce. Silage was prepared using a small-scale fermentation system, and treatments were designed as control silage without additive or with BP (30% fresh matter basis), LAB inoculant Chikuso-1 (Lactobacillus plantarum, 5 mg/kg, fresh matter basis), and BP + LAB. In vitro incubation was performed using rumen fluid mixed with McDougall's artificial saliva (at a ratio of 1:4, vol/vol) at 39°C for 6 h to determine the ruminal fermentability of the vegetable residue silages. These vegetable residues contained high levels of crude protein (20.6-22.8% of DM) and moderate levels of neutral detergent fiber (22.7-33.6% of DM). In all silages, the pH sharply decreased and lactic acid increased, and the growth of bacilli, coliform bacteria, molds, and yeasts was inhibited by the low pH at the early stage of ensiling. The silage treated with BP or LAB had a lower pH and a higher lactic acid content than the control silage. After 6 h of incubation, all silages had relatively high DM digestibility (38.6-44.9%); in particular, the LAB-inoculated silage had the highest DM digestibility and the lowest methane production. The vegetable residues had high nutritional content and high in vitro DM digestibility. Also, both the addition of a LAB inoculant and moisture adjustment with BP improved the fermentation quality of the vegetable residue silages. In addition, LAB increased DM digestibility and decreased ruminal methane production.  相似文献   

3.
Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16°Brix with a sucrose solution, and batch fermentations were performed at 22 °C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Yp/s), biomass (Yx/s), glycerol (Yg/s) and acetic acid (Yac/s), the volumetric productivity of ethanol (Qp), the biomass productivity (Px), and the fermentation efficiency (Ef) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the Ef, Yp/s, Yg/s, and Yx/s parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 μg/L), CAT-1 (80,317.01 μg/L), VR-1 (67,573.99 μg/L) and S. bayanus CBS 1505 (71,660.32 μg/L). The highest concentrations of ethyl esters were 454.33 μg/L, 440.33 μg/L and 438 μg/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 μg/L) and higher alcohols (83,996.33 μg/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters.  相似文献   

4.
The aims of this work were to elaborate a fruit wine from cagaita (Eugenia dysenterica DC) pulp and to compare the fermentations conducted with free and with Ca-alginate immobilised cells. Two strains of Saccharomyces cerevisiae (UFLA CA11 and CAT-1) were tested and four fermentation batches were performed, in triplicate, at 22 °C for 336 h: UFLA CA11 in free and immobilised cells and CAT-1in free and immobilised cells. Fermentation time and ethanol production were influenced by the yeast strain and by the cell status, with immobilised cells of UFLA CA11 and CAT-1 fermenting faster (4 days and 8 days, respectively) than UFLA CA11 and CAT-1 free cells (10 days and 12 days, respectively). Ethanol content (g/L) was slightly higher when the fermentation was conducted with free cells (94.63 and 94.94 for UFLA CA11 and CAT-1, respectively) than with immobilised cells (86.82 and 87.21 for UFLA CA11 and CAT-1, respectively). The beverage from CAT-1 free cells showed the highest concentration of higher alcohols (82,086.12 ??/L), whereas the lowest concentration (37,812.17 ??/L) was found in the beverage from immobilised UFLA CA11. The ethyl ester concentration ranged from 1511.42 ??/L (CAT-1 free cells) to 2836.34 ??/L (UFLA CA11 free cells). According to the sensory evaluation, the fruit wine acceptability was greater than 70% for colour, flavour and taste for all cagaita beverages.  相似文献   

5.
The effects of 7 additive treatments on the fermentation and aerobic stability characteristics of wilted grass silage were studied under laboratory conditions. Treatments included no additive applied (untreated control), ammonium tetraformate at 3 and 6 L/t, homofermentative lactic acid bacteria alone (hoLAB), a mixture of Lactobacillus buchneri plus homofermentative lactic acid bacteria (he+hoLAB), and an antimicrobial mixture of sodium benzoate, sodium propionate, sodium nitrite, and hexamethylenetetramine at 2.5 and 5 L/t. Additives were compared across 3 consecutive harvests of 2 perennial ryegrass cultivars (AberDart and Fennema) following a 24-h wilt. Silos were opened after at least 100 d of ensilage and aerobic stability was assessed. Season of harvest had a large effect on grass composition at ensiling, producing herbages of relatively low (approximately 145 g/kg), medium (approximately 250 g/kg), and high (approximately 365 g/kg) dry matter (DM) concentrations. Within harvests there were lesser differences between cultivars. The untreated control and hoLAB additive produced badly fermented silage from the low-DM herbages and well-fermented silage from the medium- and high-DM herbages. The ammonium tetraformate treatments produced both well-fermented and badly fermented silage from the low-DM herbages depending on cultivar, and consistently well-fermented silage from the medium- and high-DM herbages. The he+hoLAB silages had similar or slightly lower standard of fermentation than the untreated and hoLAB silages. The antimicrobial mixture produced more silages of lower standard of fermentation than the untreated control and ammonium tetraformate and hoLAB additives. All additive treatments, including the untreated control, failed to consistently increase residual water-soluble carbohydrate concentrations at silo opening. Ammonium tetraformate at 6 L/t was the most successful and he+hoLAB the least successful additive at increasing residual WSC concentrations. The hoLAB silages were generally the least aerobically stable. Silages treated with ammonium tetraformate at 6 L/t were relatively stable under aerobic conditions. The he+hoLAB additive and antimicrobial mixture had an inconsistent effect on aerobic stability. Overall, ammonium tetraformate at 6 L/t was the most effective additive evaluated in this study, producing generally well-fermented silage with the highest concentrations of residual WSC and an intermediate to long duration of aerobic stability.  相似文献   

6.
The economic damage that results from aerobic deterioration of silage is a significant problem for farm profitability and feed quality. This paper quantifies the dry matter (DM) and nutritional losses that occur during the exposure of corn and sorghum silages to air over 14 d and assesses the possibility of enhancing the aerobic stability of silages through inoculation with lactic acid bacteria (LAB). The trial was carried out in Northern Italy on corn (50% milk line) and grain sorghum (early dough stage) silages. The crops were ensiled in 30-L jars, without a LAB inoculant (C), with a Lactobacillus plantarum inoculum (LP), and with a Lactobacillus buchneri inoculum (LB; theoretical rate of 1 × 106 cfu/g of fresh forage). The pre-ensiled material, the silage at silo opening, and the aerobically exposed silage were analyzed for DM content, fermentative profiles, yeast and mold count, starch, crude protein, ash, fiber components, 24-h and 48-h DM digestibility and neutral detergent fiber (NDF) degradability. The yield and nutrient analysis data of the corn and sorghum silages were used as input for Milk2006 to estimate the total digestible nutrients, net energy of lactation, and milk production per Mg of DM. The DM fermentation and respiration losses were also calculated. The inocula influenced the in vitro NDF digestibility at 24 h, the net energy for lactation (NEL), and the predicted milk yield per megagram of DM, whereas the length of time of air exposure influenced DM digestibility at 24 and 48 h, the NEL, and the predicted milk yield per megagram of DM in the corn silages. The inocula only influenced the milk yield per megagram of DM and the air exposure affected the DM digestibility at 24 h, the NEL, and the milk yield per megagram of DM in the sorghum silages. The milk yield, after 14 d of air exposure, decreased to 1,442, 1,418, and 1,277 kg/Mg of DM for C, LB, and LP corn silages, respectively, compared with an average value of 1,568 kg of silage at opening. In the sorghum silages, the milk yield, after 14 d of air exposure, decreased to 1,226, 1,278, and 1,250 kg/Mg of DM for C, LB, and LP, respectively. When the estimated milk yield per megagram of harvested DM of corn and sorghum silage were related to mold count, it was shown that the loss of potential milk production occurred when the mold count exceeded 4 log cfu/g of silage, and it was almost halved when the mold count reached values greater than 8 log cfu/g of silage. Inoculation with L. buchneri, at a rate of 1 × 106 cfu/g of fresh forage, enhanced the stability of the silage after exposure to air, and, consequently, contributed to maintaining the nutritional value of the harvested forage over time, for air exposure up to 7 d.  相似文献   

7.
Forages are usually inoculated with homofermentative and facultative heterofermentative lactic acid bacteria (LAB) to enhance lactic acid fermentation of forages, but effects of such inoculants on silage quality and the performance of dairy cows are unclear. Therefore, we conducted a meta-analysis to examine the effects of LAB inoculation on silage quality and preservation and the performance of dairy cows. A second objective was to examine the factors affecting the response to silage inoculation with LAB. The studies that met the selection criteria included 130 articles that examined the effects of LAB inoculation on silage quality and 31 articles that investigated dairy cow performance responses. The magnitude of the effect (effect size) was evaluated using raw mean differences (RMD) between inoculated and uninoculated treatments. Heterogeneity was explored by meta-regression and subgroup analysis using forage type, LAB species, LAB application rate, and silo scale (laboratory or farm-scale) as covariates for the silage quality response and forage type, LAB species, diet type [total mixed ration (TMR) or non-TMR], and the level of milk yield of the control cows as covariates for the performance responses. Inoculation with LAB (≥105 cfu/g as fed) markedly increased silage fermentation and dry matter recovery in temperate and tropical grasses, alfalfa, and other legumes. However, inoculation did not improve the fermentation of corn, sorghum, or sugarcane silages. Inoculation with LAB reduced clostridia and mold growth, butyric acid production, and ammonia-nitrogen in all silages, but it had no effect on aerobic stability. Silage inoculation (≥105 cfu/g as fed) increased milk yield and the response had low heterogeneity. However, inoculation had no effect on diet digestibility and feed efficiency. Inoculation with LAB improved the fermentation of grass and legume silages and the performance of dairy cows but did not affect the fermentation of corn, sorghum, and sugar cane silages or the aerobic stability of any silage. Further research is needed to elucidate how silage inoculated with homofermentative and facultative heterofermentative LAB improves the performance of dairy cows.  相似文献   

8.
Natural populations of lactic acid bacteria (LAB) and silage fermentation of vegetable residues were studied. Fifty-two strains of LAB isolated from cabbage, Chinese cabbage, and lettuce residues were identified and characterized. The LAB strains were gram-positive and catalase-negative bacteria, which were divided into 6 groups (A to F) according to morphological and biochemical characteristics. The strains in group A were rods that did not produce gas from glucose and formed the d and l isomers of lactate. Groups B and C were homofermentative cocci that formed l-lactic acid. Groups D, E, and F were heterofermentative cocci that formed d-lactic acid. Based on 16S rDNA gene sequence analysis, group A to F strains were identified as Lactobacillus plantarum, Lactococcus piscium, Lactococcus lactis, Leuconostoc citreum, Weissella soli and Leuconostoc gelidum, respectively. The prevalent LAB, predominantly homofermentative lactobacilli, consisted of Lactobacillus plantarum (34.6%), Weissella soli (19.2%), Leuconostoc gelidum (15.4%), Leuconostoc citreum (13.5%), Lactococcus lactis (9.6%), and Lactococcus piscium (7.7%). Lactobacillus plantarum was the dominant member of the LAB population in 3 types of vegetable residues. These vegetable residues contained a high level of crude protein (20.2 to 28.4% of dry matter). These silages prepared by using a small-scale fermentation system were well preserved, with low pH and a relatively high content of lactate. This study suggests that the vegetable residues contain abundant LAB species and nutrients, and that they could be well preserved by making silage, which is a potentially good vegetable protein source for livestock diets.  相似文献   

9.
The potential of Saccharomyces cerevisiae (strains UFLA CA11 and UFLA FW15) and Pichia caribbica (UFLA CAF733) to produce a fermented sugarcane and pineapple drink was evaluated. Co‐ and pure cultures using different proportions of sugarcane juice and pineapple pulp (80:20, 70:30 and 60:40) were prepared. The sugar concentration of the must was adjusted to 16° Brix and was inoculated with approximately 7 log CFU/mL. After a preliminary test and based on higher concentrations of desirable volatile components, low production of acetic acid, high production of ethanol, and kinetic parameters, P. caribbica was chosen to perform the fermentation in 5 L batches. The fermentation performed with P. caribbica in the proportion of 60:40 showed a yield in ethanol of 0.45 g/g, an ethanol productivity of 1.32 g/L/h and a fermentation efficiency of 88.22%. The maximum ethanol concentration was 79.78 g/L and P. caribbica increased concentrations of desirable volatile compounds, such as 2‐phenyethanol, 2‐methyl‐1‐propanol, 3‐methyl‐1‐butanol, ethyl acetate and phenylethyl acetate. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

10.
Whole-plant corn was harvested at 33 (normal) and 41% (moderately high) dry matter (DM) and ensiled in quadruplicate 20-L laboratory silos to investigate the effects of Lactobacillus buchneri 40788 (LB) or L. plantarum MTD-1 (LP) alone, or in combination, on the fermentation and aerobic stability of the resulting silage. Aerobic stability was defined as the amount of time after exposure to air for the silage temperature to reach 2°C above ambient temperature. The chopped forage was used in a 2 × 2 × 2 factorial arrangement of treatments: normal and moderately high DM contents, LB at 0 (untreated) or 4 × 105 cfu/g of fresh forage, and LP at 0 or 1 × 105 cfu/g. After 240 d of ensiling, corn silage harvested at the moderately high DM had higher pH, higher concentrations of ethanol, and more yeasts compared with the silage ensiled at the normal DM content. Inoculation with LB did not affect the concentration of lactic acid in silages with a moderately high DM, but decreased the concentration of lactic acid in the silage with normal DM. Higher concentrations of acetic acid were found in the silage treated with LB compared with those not treated with this organism. Inoculation with LP increased the concentration of lactic acid only in the silage with the normal DM content. The concentration of acetic acid was lower in silage treated with LP with a moderately high DM content, but greater in the silage treated with LP with the normal DM content when compared with silages without this inoculant. Appreciable amounts of 1,2-propanediol (average 1.65%, DM basis) were found in all silages treated with LB regardless of the DM content. The addition of L. buchneri increased the concentration of NH3-N in silages but the addition of L. plantarum decreased it. Aerobic stability was improved in all silages treated with LB, with greater aerobic stability occurring in the silage with moderately high DM compared with silage with normal DM content. Inoculation with LP had no effect on aerobic stability. There were no interactions between L. buchneri and L. plantarum for most fermentation products or aerobic stability of the silages. This study showed that inoculating whole-plant corn with L. buchneri 40788 or L. plantarum MTD-1 has different beneficial effects on the resulting silage. There appear to be no major interactions between these organisms when added together to forage. Thus, there is potential to add both organisms simultaneously to improve the fermentation and aerobic stability of corn silage.  相似文献   

11.
The survival of silage lactic acid bacteria (LAB) in the gut of dairy cows was evaluated by examining the LAB communities of silage and gut contents. Samples were collected at 2 different research institutes (Mie and Okayama) that offered total mixed ration (TMR) silage throughout the year. Silage and feces were sampled in August, October, and November at the Mie institute, whereas silage, rumen fluid, and feces were sampled in June and August at the Okayama institute. Denaturing gradient gel electrophoresis using Lactobacillus-specific primers was performed to detect LAB species in the samples. The selected bands were purified for species identification and the band patterns were used for principal component analysis. Lactic acid was the predominant fermentation product in all the TMR silages analyzed, and the lactic acid level tended to be constant regardless of the sampling time and region. A total of 14 LAB species were detected in the TMR silage samples, of which 5 (Lactobacillus acetotolerans, Lactobacillus pontis, Lactobacillus casei, Lactobacillus suebicus, and Lactobacillus plantarum) were detected in the dairy cow feces. Most of the denaturing gradient gel electrophoresis bands for the feces samples were also detected in the rumen fluid, suggesting that any elimination of silage LAB occurred in the rumen and not in the postruminal gut segments. The principal component analysis indicated that the LAB communities in the silage, rumen fluid, and feces were separately grouped; hence, the survival of silage LAB in the cow rumen and lower gut was deemed difficult. It was concluded that, although the gut LAB community is robust and not easily affected by the silage conditions, several LAB species can inhabit both silage and feces, which suggests the potential of using silage as a vehicle for conveying probiotics.  相似文献   

12.
苹果酸-乳酸发酵细菌乙醇胁迫应答机制研究进展   总被引:1,自引:0,他引:1  
由乳酸菌引起的苹果酸-乳酸发酵是生产优质葡萄酒的一个重要工艺过程。在这个过程中,乙醇是乳酸菌活性的主要抑制因子,特别是随着全球气候变暖带来的葡萄含糖量的增加,乙醇对乳酸菌的抑制作用越来越成为人们的研究热点。乙醇胁迫使得乳酸菌细胞结构发生变化,影响苹果酸-乳酸发酵的顺利进行。因此,乳酸菌在乙醇胁迫下的生长、代谢对葡萄酒生产是非常重要的。该文对苹果酸-乳酸发酵过程中常见乳酸细菌在乙醇胁迫下的应答机制进行了阐述,为乳酸菌乙醇胁迫耐受性机制的研究和优良菌株的选育提供参考。  相似文献   

13.
Abstract: Four lychee (Litchi chinensis Sonn) wines (prepared with 3 yeast strains [UFLA CA11, UFLA CA1183, and UFLA CA1174]) and a spontaneous fermentation (SPON) were done in order to add value to the fruit while preventing waste arising from the short shelf life of lychee. The fermentation was monitored daily by analyzing the soluble solids, pH, acidity, ethanol, and sugar. At the end of fermentation, the wines were subjected to chemical, physical–chemical, and sensory analysis. The wines prepared showed greater variations in the qualitative than in the quantitative analysis of their constituents. The sensory analysis indicated that the wines fermented by yeast UFLA CA1183 and UFLA CA11 had rates of acceptance above 75%. The principal components analysis separated the wines into 2 groups according to the analyzed compounds. Based on these analyses, the wine produced by inoculation with UFLA CA1183 proved to be the most suitable for the production of lychee wines. Practical Application: Development of new products and adding value to fruits. Importance of selection of specific yeasts for production of fruit wine.  相似文献   

14.
In the last years there is an increasing demand to produce wines with higher glycerol levels and lower ethanol contents. The production of these compounds by yeasts is influenced by many environmental variables, and could be controlled by the choice of optimized cultivation conditions. The present work studies, in a wine model system, the effects of temperature, pH and sugar concentration on the glycerol and ethanol syntheses by yeasts Saccharomyces cerevisiae T73, the type strain of Saccharomyces kudriavzevii IFO 1802T, and an interspecific hybrid between both species (W27), which was accomplished by the application of response surface methodology based in a central composite circumscribed design. Results show that carbon flux could be especially directed towards glycerol synthesis instead of ethanol at low pH, high sugar concentrations and low temperatures. In general, the non-wine yeast S. kudriavzevii produced higher glycerol levels and lower ethanol content than wine strains S. cerevisiae T73 and the hybrid W27, with specific and different glycerol production profiles as a function of temperature and pH. These results were congruent with the higher glycerol-3-phosphate dehydrogenase activities estimated for this species, chiefly at low temperatures (14 °C), which could explain why S. kudriavzevii is a cryotolerant yeast compared to S. cerevisiae.  相似文献   

15.
Pediocin PA-1 is an antimicrobial peptide produced by lactic acid bacteria (LAB) that has been sufficiently well characterised to be used in food industry as a biopreservative. Sulphur dioxide is the traditional antimicrobial agent used during the winemaking process to control bacterial growth and wine spoilage. In this study, we describe the effect of pediocin PA-1 alone and in combination with sulphur dioxide and ethanol on the growth of a collection of 53 oenological LAB, 18 acetic acid bacteria and 16 yeast strains; in addition, production of pediocin PA-1 by Pediococcus acidilactici J347-29 in presence of ethanol and grape must is also reported. Inhibitory concentrations (IC) and minimal bactericide concentrations of pediocin PA-1 were determined against LAB, and revealed a bacteriostatic effect. Oenococcus oeni resulted more sensitive to pediocin PA-1 (IC50 = 19 ng/ml) than the other LAB species (IC50 = 312 ng/ml). Cooperative inhibitory effects of pediocin PA-1 and either sulphur dioxide or ethanol were observed on LAB growth. Moreover, the pediocin PA-1 producing P. acidilactici strain J347-29 was able to grow and produce the bacteriocin in presence of ethanol (up to 4% ethanol in the fermentation broth) and grape must (up to 80%), which indicated that pediocin PA-1 can be considered as a potential biopreservative in winemaking.  相似文献   

16.
BACKGROUND: In this study the inhibition of hop beta acids on the growth of clostridia in soil‐contaminated pressed sugar beet pulp silages was investigated. Hop beta acids are natural substances which display their effect at low concentrations. Fresh pressed beet pulp material was mixed with soil to artificially contaminate it with clostridia. Laboratory silos were filled with the substrate, stored at 25 °C and opened for sampling at 0, 2, 8, 15, 30, 60, and 90 days. The impact on clostridial growth during silage fermentation was monitored by determination of the pH value and dry matter content, as well as chemical analysis of the fermentation products. Throughout the experiments, the effect of a commercial silage inoculant based on lactic acid bacteria (LAB) and hop‐resistant LAB were examined with and without the combination of plant‐based antimicrobials. RESULTS: Results indicate that in contaminated silage samples without any additives high butyric acid contents occurred due to clostridial growth. This spoilage could not be suppressed by the application of LAB, whereas the combined application of LAB and hop beta acids significantly improved silage quality, which was reflected by favourable organic acid composition (P < 0.05). CONCLUSION: The experimental data indicate that the application of hop beta acids improves the preservation effect of LAB in suppressing clostridial growth in silages and thus demonstrates some potential for the combined use of plant‐based antimicrobials and LAB. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
The accumulation of citrulline and ornithine in wine or beer as a result of the arginine catabolism of some lactic acid bacteria (LAB) species increases the risk of ethyl carbamate and putrescine formation, respectively. Several LAB species, which are found as spoilage bacteria in alcoholic beverages, have been reported to be arginine degrading. This study evaluates the effect of ethanol content and low pH on the excretion of citrulline and ornithine by two strains belonging to the potential contaminant species Lactobacillus brevis and Pediococcus pentosaceus. In the conditions that most affected cell viability, arginine consumption per cell increased noticeably, indicating that arginine utilization may be a stress responsive mechanism. L. brevis showed a higher accumulation of ornithine in the media than P. pentosaceus. In the presence of ethanol, a higher expression of the arcC gene was found in P. pentosaceus, which resulted in a lower excretion of citrulline and ornithine than in L. brevis. This suggests that L. brevis is more likely to produce these amino acids, which are precursors of ethyl carbamate and putrescine.  相似文献   

18.
One hundred and thirty-seven lactic acid bacteria (LAB), previously isolated from wheat (Triticum durum) grains and non-conventional flour samples, were tested for the production of antibacterial substances. A total of 16 strains (5 Enterococcus faecium, 5 Enterococcus mundtii, 4 Pediococcus pentosaceus, 1 Lactobacillus coryniformis and 1 Lactococcus garvieae) were found to inhibit the growth of Listeria innocua. The antibacterial activities were preliminarily investigated for their general behaviour with proteolytic (proteinase K, protease B and trypsin), amylolytic (α-amylase) and lipolytic (lipase) enzymes, after heat treatment, and exposure to different pHs and ethanol concentrations. Bacteriocin-like inhibitory substances (BLIS) were also characterized for their inhibition spectra against non-pathogenic and pathogenic food-associated and human pathogenic bacteria. LAB showing the best characteristics in terms of inhibition spectrum, inhibition activity and mode of action (bactericidal) belonged to the species Ent. mundtii. The high percentage (11.68%) of BLIS-producing strains detected confirmed previous observations that raw materials may harbour higher numbers of bacteriocinogenic LAB than fermented foods.  相似文献   

19.
甘蔗品种开花对工农艺性状的影响   总被引:2,自引:0,他引:2  
通过在内陆具有得天独厚甘蔗开花条件的云南瑞丽蔗区进行调查.甘蔗开花可导致甘蔗糖分降低和蔗茎产量损失的情况并不存在。相反,即使花期长达150天的甘蔗品种,仍能继续完成蔗糖分的积累,达到高糖。  相似文献   

20.
Whole crop corn (DM 29.2%) and a total mixed ration (TMR, DM 56.8%) containing wet brewers grains, alfalfa hay, dried beet pulp, cracked corn, soybean meal, and molasses at a ratio of 5:1:1:1:1:1 on fresh weight basis, were ensiled with and without Lactobacillus casei or Lactobacillus buchneri in laboratory silos. The effects of inoculation on microbial counts, fermentation products, and aerobic stability were determined after 10 and 60 d. Untreated corn silage was well preserved with high lactic acid content, whereas large numbers of remaining yeasts resulted in low stability on exposure to air. Inoculation with L. casei suppressed heterolactic fermentation, but no improvements were found in aerobic stability. The addition of L. buchneri markedly enhanced the aerobic stability, while not affecting the DM loss and NH3-N production. Large amounts of ethanol were found when the TMR was ensiled, and the content of ethanol overwhelmed that of lactic acid in untreated silage. This fermentation was related to high yeast populations and accounted for a large loss of DM found in the initial 10 d. The ethanol production decreased when inoculated with L. casei and L. buchneri, but the effects diminished at 60 d of ensiling. Inoculation with L. buchneri lowered the yeasts in TMR silage from the beginning of storage; however, the populations decreased to undetectable levels when stored for 60 d, regardless of inoculation. No heating was observed in TMR silage during aerobic deterioration test for 7 d. This stability was achieved even when a high population of yeasts remained and was not affected by either inoculation or ensiling period. The results indicate that inoculation with L. buchneri can inhibit yeast growth and improve aerobic stability of corn and TMR silage; however, high stability of TMR silage can be obtained even when no treatments were made and high population (>10(5) cfu/g) of yeasts were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号