首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fluid whey or retentate are often bleached to remove residual annatto Cheddar cheese colorant, and this process causes off‐flavors in dried whey proteins. This study determined the impact of temperature and bleaching agent on bleaching efficacy and volatile components in fluid whey and fluid whey retentate. Freshly manufactured liquid whey (6.7% solids) or concentrated whey protein (retentate) (12% solids, 80% protein) were bleached using benzoyl peroxide (BP) at 100 mg/kg (w/w) or hydrogen peroxide (HP) at 250 mg/kg (w/w) at 5 °C for 16 h or 50 °CC for 1 h. Unbleached controls were subjected to a similar temperature profile. The experiment was replicated three times. Annatto destruction (bleaching efficacy) among treatments was compared, and volatile compounds were extracted and separated using solid phase microextraction gas chromatography mass spectrometry (SPME GC‐MS). Bleaching efficacy of BP was higher than HP (P < 0.05) for fluid whey at both 5 and 50 °C. HP bleaching efficacy was increased in retentate compared to liquid whey (P < 0.05). In whey retentate, there was no difference between bleaching with HP or BP at 50 or 5 °C (P > 0.05). Retentate bleached with HP at either temperature had higher relative abundances of pentanal, hexanal, heptanal, and octanal than BP bleached retentate (P < 0.05). Liquid wheys generally had lower concentrations of selected volatiles compared to retentates. These results suggest that the highest bleaching efficacy (within the parameters evaluated) in liquid whey is achieved using BP at 5 or 50 °C and at 50 °C with HP or BP in whey protein retentate.  相似文献   

3.
The effect of enzymatic bleaching with lactoperoxidase (LP) or exogenous peroxidase (EP) on the color and flavor of commercially produced whey protein concentrates (34% or 80% protein on a dry weight basis) was evaluated. Optimum levels of added H2O2 and optimum bleaching times were determined in commercial retentates by quantifying norbixin destruction. Retentates were then bleached and sensory and volatile analyses were conducted. In some retentates, LP-induced bleaching was not observed; however, EP-induced bleaching was effective under all conditions. Enzymatically-induced bleaching (both LP and EP) occurred faster at 35 °C than at 4 °C. Solids level also affected the speed of bleaching; samples with lower solids bleached in less time than those with higher solids. Bleached retentates, regardless of treatment, were higher in aroma intensity and cardboard flavor and were also higher in aldehydes. LP activity and subsequent bleaching of commercial retentates was variable while EP-induced bleaching was consistently effective.  相似文献   

4.
The residual annatto colorant in liquid whey is bleached to provide a desired neutral color in dried whey ingredients. This study evaluated the influence of starter culture, whey solids and composition, and spray drying on bleaching efficacy. Cheddar cheese whey with annatto was manufactured with starter culture or by addition of lactic acid and rennet. Pasteurized fat-separated whey was ultrafiltered (retentate) and spray dried to 34% whey protein concentrate (WPC34). Aliquots were bleached at 60 °C for 1 h (hydrogen peroxide, 250 ppm), before pasteurization, after pasteurization, after storage at 3 °C and after freezing at -20 °C. Aliquots of retentate were bleached analogously immediately and after storage at 3 or -20 °C. Freshly spray dried WPC34 was rehydrated to 9% (w/w) solids and bleached. In a final experiment, pasteurized fat-separated whey was ultrafiltered and spray dried to WPC34 and WPC80. The WPC34 and WPC80 retentates were diluted to 7 or 9% solids (w/w) and bleached at 50 °C for 1 h. Freshly spray-dried WPC34 and WPC80 were rehydrated to 9 or 12% solids and bleached. Bleaching efficacy was measured by extraction and quantification of norbixin. Each experiment was replicated 3 times. Starter culture, fat separation, or pasteurization did not impact bleaching efficacy (P > 0.05) while cold or frozen storage decreased bleaching efficacy (P < 0.05). Bleaching efficacy of 80% (w/w) protein liquid retentate was higher than liquid whey or 34% (w/w) protein liquid retentate (P < 0.05). Processing steps, particularly holding times and solids composition, influence bleaching efficacy of whey. PRACTICAL APPLICATION: Optimization of whey bleaching conditions is important to reduce the negative effects of bleaching on the flavor of dried whey ingredients. This study established that liquid storage and whey composition are critical processing points that influence bleaching efficacy.  相似文献   

5.
Lactoperoxidase (LP) is the second most abundant enzyme in bovine milk and has been used in conjunction with hydrogen peroxide (H2O2) and thiocyanate (SCN) to work as an antimicrobial in raw milk where pasteurization is not feasible. Thiocyanate is naturally present and the lactoperoxidase system purportedly can be used to bleach dairy products, such as whey, with the addition of very little H2O2 to the system. This study had 3 objectives: 1) to quantify the amount of H2O2 necessary for bleaching of fluid whey using the LP system, 2) to monitor LP activity from raw milk through manufacture of liquid whey, and 3) to compare the flavor of whey protein concentrate 80% (WPC80) bleached by the LP system to that bleached by traditional H2O2 bleaching. Cheddar cheese whey with annatto (15 mL of annatto/454 kg of milk, annatto with 3% wt/vol norbixin content) was manufactured using a standard Cheddar cheesemaking procedure. Various levels of H2O2 (5–100 mg/kg) were added to fluid whey to determine the optimum concentration of H2O2 for LP activity, which was measured using an established colorimetric method. In subsequent experiments, fat-separated whey was bleached for 1 h with 250 mg of H2O2/kg (traditional) or 20 mg of H2O2/kg (LP system). The WPC80 was manufactured from whey bleached with 250 mg of H2O2/kg or 20 mg of H2O2/kg. All samples were subjected to color analysis (Hunter color values and norbixin extraction) and proximate analysis (fat, protein, and moisture). Sensory and instrumental volatile analyses were conducted on WPC80. Optimal LP bleaching in fluid whey occurred with the addition of 20 mg of H2O2/kg. Bleaching of fluid whey at either 35 or 50°C for 1 h with LP resulted in >99% norbixin destruction compared with 32 or 47% destruction from bleaching with 250 mg of H2O2/kg, at 35 or 50°C for 1 h, respectively. Higher aroma intensity and increased lipid oxidation compounds were documented in WPC80 from bleached whey compared with WPC80 from unbleached whey. Monitoring of LP activity throughout cheese and whey manufacture showed that LP activity sharply decreased after 30 min of bleaching (17.01 ± 1.4 to <1 U/mL), suggesting that sufficient bleaching takes place in a very short amount of time. Lactoperoxidase averaged 13.01 ± 0.7 U/mL in unpasteurized, fat-separated liquid whey and 138.6 ± 11.9 U/mL in concentrated retentate (11% solids). Lactoperoxidase may be a viable alternative for chemical whey bleaching.  相似文献   

6.
Previous research has demonstrated that unit operations in whey protein manufacture promote off‐flavor production in whey protein. The objective of this study was to determine the effects of feed solids concentration in liquid retentate and spray drier inlet temperature on the flavor of dried whey protein concentrate (WPC). Cheddar cheese whey was manufactured, fat‐separated, pasteurized, bleached (250 ppm hydrogen peroxide), and ultrafiltered (UF) to obtain WPC80 retentate (25% solids, wt/wt). The liquid retentate was then diluted with deionized water to the following solids concentrations: 25%, 18%, and 10%. Each of the treatments was then spray dried at the following temperatures: 180 °C, 200 °C, and 220 °C. The experiment was replicated 3 times. Flavor of the WPC80 was evaluated by sensory and instrumental analyses. Particle size and surface free fat were also analyzed. Both main effects (solids concentration and inlet temperature) and interactions were investigated. WPC80 spray dried at 10% feed solids concentration had increased surface free fat, increased intensities of overall aroma, cabbage and cardboard flavors and increased concentrations of pentanal, hexanal, heptanal, decanal, (E)2‐decenal, DMTS, DMDS, and 2,4‐decadienal (P < 0.05) compared to WPC80 spray dried at 25% feed solids. Product spray dried at lower inlet temperature also had increased surface free fat and increased intensity of cardboard flavor and increased concentrations of pentanal, (Z)4‐heptenal, nonanal, decanal, 2,4‐nonadienal, 2,4‐decadienal, and 2‐ and 3‐methyl butanal (P < 0.05) compared to product spray dried at higher inlet temperature. Particle size was higher for powders from increased feed solids concentration and increased inlet temperature (P < 0.05). An increase in feed solids concentration in the liquid retentate and inlet temperature within the parameters evaluated decreased off‐flavor intensity in the resulting WPC80.  相似文献   

7.
《Journal of dairy science》1986,69(8):2011-2017
Whole milk retentates, prepared by ultrafiltration of pasteurized milk to volume concentration ratios of 1.5:1, 1.75:1, and 2:1, were made into low moisture Mozzarella cheese using thermophilic bacterial cultures.Good melting properties, increased output per vat, and higher yield efficiency based on total solids were observed in retentate over control cheese. Optimum retentate volume concentration ratio was 1.75:1. Cheese from 2:1 volume concentration ratio retentates had desirable qualities but were firmer with greater whey fat losses than cheese from non-retentate controls or 1.5:1, and 1.75:1 volume concentration ratio retentates. Composition of cheese made from whole milk retentates using thermophilic starters complied with US federal standards of identity for low moisture Mozzarella cheese.  相似文献   

8.
The effects of heat processing on the composition and functionality of whey protein concentrations (WPC) were investigated. WPC was manufactured from milk, whey and retentate that had either been pasteurized at 72°C for 15 sec or had received no heat treatment. Eight combinations of heat treatment were utilized. Pasteurization of the milk had a positive effect on overrun and foam stability, but a negative effect on gel strength at pH 6.5, protein hydrophobicity, and neutral lipid content. Pasteurization of the whey resulted in decreased mineral content bud did not affect functionality. Pasteurization of the retentate caused a decrease in emulsion capacity, soluble β-lactoglobulin, solubility, whipped topping overrun and gel strength at pH 8.0.  相似文献   

9.
Off-flavors in whey protein negatively influence consumer acceptance of whey protein ingredient applications. Clear acidic beverages are a common application of whey protein, and recent studies have demonstrated that beverage processing steps, including acidification, enhance off-flavor production from whey protein. The objective of this study was to determine the effect of preacidification of liquid ultrafiltered whey protein concentrate (WPC) before spray drying on flavor of dried WPC. Two experiments were performed to achieve the objective. In both experiments, Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 mg/kg of hydrogen peroxide), and ultrafiltered (UF) to obtain liquid WPC that was 13% solids (wt/wt) and 80% protein on a solids basis. In experiment 1, the liquid retentate was then acidified using a blend of phosphoric and citric acids to the following pH values: no acidification (control; pH 6.5), pH 5.5, or pH 3.5. The UF permeate was used to normalize the protein concentration of each treatment. The retentates were then spray dried. In experiment 2, 150 μg/kg of deuterated hexanal (D12-hexanal) was added to each treatment, followed by acidification and spray drying. Both experiments were replicated 3 times. Flavor properties of the spray-dried WPC were evaluated by sensory and instrumental analyses in experiment 1 and by instrumental analysis in experiment 2. Preacidification to pH 3.5 resulted in decreased cardboard flavor and aroma intensities and an increase in soapy flavor, with decreased concentrations of hexanal, heptanal, nonanal, decanal, dimethyl disulfide, and dimethyl trisulfide compared with spray drying at pH 6.5 or 5.5. Adjustment to pH 5.5 before spray drying increased cabbage flavor and increased concentrations of nonanal at evaluation pH values of 3.5 and 5.5 and dimethyl trisulfide at all evaluation pH values. In general, the flavor effects of preacidification were consistent regardless of the pH to which the solutions were adjusted after spray drying. Preacidification to pH 3.5 increased recovery of D12-hexanal in liquid WPC and decreased recovery of D12-hexanal in the resulting powder when evaluated at pH 6.5 or 5.5. These results demonstrate that acidification of liquid WPC80 to pH 3.5 before spray drying decreases off-flavors in spray-dried WPC and suggest that the mechanism for off-flavor reduction is the decreased protein interactions with volatile compounds at low pH in liquid WPC or the increased interactions between protein and volatile compounds in the resulting powder.  相似文献   

10.
The Cheddar cheese colorant annatto is present in whey and must be removed by bleaching. Chemical bleaching negatively affects the flavor of dried whey ingredients, which has established a need for a better understanding of the primary colorant in annatto, norbixin, along with cheese color alternatives. The objective of this study was to determine norbixin partitioning in cheese and whey from full-fat and fat-free Cheddar cheese and to determine the viability of bixin, the nonpolar form of norbixin, as an alternative Cheddar cheese colorant. Full-fat and fat-free Cheddar cheeses and wheys were manufactured from colored pasteurized milk. Three norbixin (4% wt/vol) levels (7.5, 15, and 30 mL of annatto/454 kg of milk) were used for full-fat Cheddar cheese manufacture, and 1 norbixin level was evaluated in fat-free Cheddar cheese (15 mL of annatto/454 kg of milk). For bixin incorporation, pasteurized whole milk was cooled to 55°C, and then 60 mL of bixin/454 kg of milk (3.8% wt/vol bixin) was added and the milk homogenized (single stage, 8 MPa). Milk with no colorant and milk with norbixin at 15 mL/454 kg of milk were processed analogously as controls. No difference was found between the norbixin partition levels of full-fat and fat-free cheese and whey (cheese mean: 79%, whey: 11.2%). In contrast to norbixin recovery (9.3% in whey, 80% in cheese), 1.3% of added bixin to cheese milk was recovered in the homogenized, unseparated cheese whey, concurrent with higher recoveries of bixin in cheese (94.5%). These results indicate that fat content has no effect on norbixin binding or entrapment in Cheddar cheese and that bixin may be a viable alternative colorant to norbixin in the dairy industry.  相似文献   

11.
The objective of this study was to characterize the impact of heat treatments on the distribution of transforming growth factor-beta (TGF-??2) between cream and skim milk and between the casein and whey fractions of skim milk. Skimming removed 45% and 62% of the TGF-??2 from raw and pasteurized milks and only 8% of the total TGF-??2 in skimmed pasteurized milk was found in whey, compared to 37% in whey from raw skimmed milk. The TGF-??2 content of whey decreased as the heat treatment of the milk increased in intensity (thermization > pasteurization > UHT sterilization). Using milk held for 1 or 2 min at temperatures ranging from 57 to 84 °C, it was shown that TGF-??2 in the whey portion decreases at temperatures above 66 °C and becomes undetectable at temperatures higher than 76 °C. Altogether, these data on the heat-induced changes in TGF-??2 content of cream, skim milk, casein and whey reveal a potentially negative impact of certain heat treatments in developing TGF-??2-enriched fractions from milk.  相似文献   

12.
Previous research has shown that bleaching affects flavor and functionality of whey proteins. The role of different bleaching agents on vitamin and carotenoid degradation is unknown. The objective of this study was to determine the effects of bleaching whey with traditional annatto (norbixin) by hydrogen peroxide (HP), benzoyl peroxide (BP), or native lactoperoxidase (LP) on vitamin and carotenoid degradation in spray-dried whey protein concentrate 80% protein (WPC80). An alternative colorant was also evaluated. Cheddar whey colored with annatto (15 mL/454 L of milk) was manufactured, pasteurized, and fat separated and then assigned to bleaching treatments of 250 mg/kg HP, 50 mg/kg BP, or 20 mg/kg HP (LP system) at 50°C for 1 h. In addition to a control (whey with norbixin, whey from cheese milk with an alternative colorant (AltC) was evaluated. The control and AltC wheys were also heated to 50°C for 1 h. Wheys were concentrated to 80% protein by ultrafiltration and spray dried. The experiment was replicated in triplicate. Samples were taken after initial milk pasteurization, initial whey formation, after fat separation, after whey pasteurization, after bleaching, and after spray drying for vitamin and carotenoid analyses. Concentrations of retinol, a-tocopherol, water-soluble vitamins, norbixin, and other carotenoids were determined by HPLC, and volatile compounds were measured by gas chromatography-mass spectrometry. Sensory attributes of the rehydrated WPC80 were documented by a trained panel. After chemical or enzymatic bleaching, WPC80 displayed 7.0 to 33.3% reductions in retinol, β-carotene, ascorbic acid, thiamin, α-carotene, and α-tocopherol. The WPC80 bleached with BP contained significantly less of these compounds than the HP- or LP-bleached WPC80. Riboflavin, pantothenic acid, pyridoxine, nicotinic acid, and cobalamin concentrations in fluid whey were not affected by bleaching. Fat-soluble vitamins were reduced in all wheys by more than 90% following curd formation and fat separation. With the exception of cobalamin and ascorbic acid, water-soluble vitamins were reduced by less than 20% throughout processing. Norbixin destruction, volatile compound, and sensory results were consistent with previous studies on bleached WPC80. The WPC80 colored with AltC had a similar sensory profile, volatile compound profile, and vitamin concentration as the control WPC80.  相似文献   

13.
Native-PAGE (polyacrylamide gel electrophoresis) was used for the simultaneous qualitative and quantitative analysis of whey proteins of raw, commercial and laboratory heat-treated bovine milks. Four whey protein bands, including β-lactoglobulin variants (β-LG A and B), could be distinctively separated in the gel. The results showed that levels of the major whey proteins were reduced by less than 23% in the pasteurized milks and by more than 85% in the UHT milks as compared with raw milk. The α-lactalbumin (α-LA) exhibited the strongest heat-tolerance: about 32% of it remained in its native state after the milk was heated at 100 °C for 10 min. About 42% of β-LG A and 53% of β-LG B were lost after the milk was heated at 75 °C for 30 min. Blood serum albumin (BSA) was lost almost completely when the milk at pH 5.0 was heated at a temperature of 75 °C or higher. The β-LGA and β-LGB were much more stable at low pH than in neutral conditions.  相似文献   

14.
The use of whey protein as an ingredient in foods and beverages is increasing, and thus demand for colorless and mild-tasting whey protein is rising. Bleaching is commonly applied to fluid colored cheese whey to decrease color, and different temperatures and bleach concentrations are used. The objectives of this study were to compare the effects of hot and cold bleaching, the point of bleaching (before or after fat separation), and bleaching agent on bleaching efficacy and volatile components of liquid colored and uncolored Cheddar whey. First, Cheddar whey was manufactured, pasteurized, fat-separated, and subjected to one of a number of hot (68°C) or cold (4°C) bleaching applications [hydrogen peroxide (HP) 50 to 500 mg/kg; benzoyl peroxide (BP) 25 to 100 mg/kg] followed by measurement of residual norbixin and color by reflectance. Bleaching agent concentrations were then selected for the second trial. Liquid colored Cheddar whey was manufactured in triplicate and pasteurized. Part of the whey was collected (no separation, NSE) and the rest was subjected to fat separation (FSE). The NSE and FSE wheys were then subdivided and bleaching treatments (BP 50 or 100 mg/kg and HP 250 or 500 mg/kg) at 68°C for 30 min or 4°C for 16 h were applied. Control NSE and FSE with no added bleach were also subjected to each time-temperature combination. Volatile compounds from wheys were evaluated by gas chromatography-mass spectrometry, and norbixin (annatto) was extracted and quantified to compare bleaching efficacy. Proximate analysis, including total solids, protein, and fat contents, was also conducted. Liquid whey subjected to hot bleaching at both concentrations of HP or at 100mg/kg BP had greater lipid oxidation products (aldehydes) compared with unbleached wheys, 50mg/kg BP hot-bleached whey, or cold-bleached wheys. No effect was detected between NSE and FSE liquid Cheddar whey on the relative abundance of volatile lipid oxidation products. Wheys bleached with BP had lower norbixin content compared with wheys bleached with HP. Bleaching efficacy of HP was decreased at 4°C compared with 68°C, whereas that of BP was not affected by temperature. These results suggest that fat separation of liquid Cheddar whey has no effect on bleaching efficacy or lipid oxidation and that hot bleaching may result in increased lipid oxidation in fluid whey.  相似文献   

15.
ABSTRACT: The gelation characteristics of mixed gels containing κ-carrageenan and skim milk or milk fractions (skim milk permeate or retentate) obtained by ultrafiltration were examined. Increasing the skim milk solids content of mixtures containing carrageenan increased setting temperatures and gel strength. The milk proteins contributed to gel strength but did not influence the setting temperature of mixtures. The binding of denatured whey proteins to casein micelles affected gel network formation of milk-carrageenan mixtures containing 10% milk solids. Network formation in mixed gels containing carrageenan and milk or milk fractions was initiated by the carrageenan component and dictated primarily by the ionic content of the mixtures.  相似文献   

16.
The viscosity of concentrates (50–55% total solids) prepared from skim milk heated (5 min at 80 or 90 °C) at pH 6.5 and 6.7 was examined. The extent of heat-induced whey protein denaturation increased with increasing temperature and pH. More denatured whey protein and κ-casein were found in the serum phase of milk heated at higher pH. The viscosity of milk concentrates increased considerably with increasing pH at concentration and increasing heating temperature, whereas the distribution of denatured whey proteins and κ-casein between the serum and micellar phase only marginally influenced concentrate viscosity. Skim milk concentrate viscosity thus appears to be governed primarily by volume fraction and interactions of particles, which are governed primarily by concentration factor, the extent of whey protein denaturation and pH. Control and optimization of these factors can facilitate control over skim milk concentrate viscosity and energy efficiency in spray-drying.  相似文献   

17.
The effect of increasing the colloidal calcium phosphate (CCP) content on the physical, rheological, and microstructural properties of yogurt was investigated. The CCP content of heated (85°C for 30 min) milk was increased by increasing the pH by the addition of alkali (NaOH). Alkalized milk was dialyzed against pasteurized skim milk at approximately 4°C for 72 h to attempt to restore the original pH and soluble Ca content. By adjustment of the milk to pH values 7.45, 8.84, 10.06, and 10.73, the CCP content was increased to approximately 107, 116, 123, and 128%, respectively, relative to the concentration in heated milk. During fermentation of milk, the storage modulus (G′) and loss tangent values of yogurts were measured using dynamic oscillatory rheology. Large deformation rheological properties were also measured. The microstructure of yogurt was observed using fluorescence microscopy, and whey separation was determined. Acid-base titration was used to evaluate changes in the CCP content in milk. Total Ca and casein-bound Ca increased with an increase in the pH value of alkalization. During acidification, elevated buffering occurred in milk between pH values 6.7 to 5.2 with an increase in the pH of alkalization. When acidified milk was titrated with alkali, elevated buffering occurred in milk between pH values 5.6 to 6.4 with an increase in the pH of alkalization. The high residual pH of milk after dialysis could be responsible for the decreased contents of soluble Ca in these milks. The pH of gelation was higher in all dialyzed samples compared with the heated control milk, and the gelation pH was higher with an increase in CCP content. The sample with highest CCP content (128%) exhibited gelation at very high pH (6.3), which could be due to alkali-induced CN micellar disruption. The G′ values at pH 4.6 were similar in gels with CCP levels up to 116%; at higher CCP levels, the G′ values at pH 4.6 greatly decreased. Loss tangent values at pH 5.1 were similar in all samples except in gels with a CCP level of 128%. For dialyzed milk, the whey separation levels were similar in gels made from milk with up to 107% CCP but increased at higher CCP levels. Microstructure of yogurt gels made from milk with 100 to 107% CCP was similar but very large clusters were observed in gels made from milk with higher CCP levels. By dialyzing heated milk against pasteurized milk, we may have retained some heat-induced Ca phosphate on micelles that normally dissolves on cooling because, during dialysis, pasteurized milk provided soluble Ca ions to the heated milk system. Yogurt texture was significantly affected by increasing the casein-bound Ca (and total Ca) content of milk as well as by the alkalization procedure involved in that approach.  相似文献   

18.
《Journal of dairy science》1986,69(6):1479-1483
Ultrafiltered skim milk retentates were transported to a large industrial cottage cheese plant for milk supplementation leading to cottage cheese. The resulting industrial products were observed for composition, yields, whey component losses, and quality.Ten lots of small curd cottage cheese were made in vats containing up to 6593 kg skim milk. Retentate supplemented skim milks, concentrated approximately 10% (1.1:1) and 20% (1.2:1) in total protein, were very similar in initial composition to the controls. Mean cheese yield values from milks supplemented to 1.2:1 total protein were significantly higher than mean unsupplemented control milk values. Cheese yield efficiencies, per kilogram total solids, were also significantly higher in the retentate cheese but not when calculated per kilogram total protein.Total solids, total protein, and ash were higher in cottage cheese wheys from retentate supplemented cheese and were directly related to retentate supplementation concentration. Mean whey component loss per kilogram cheese exhibited significant decreases from milks of higher retentate supplementation. Retentate supplemented skim milk produced industrial cottage cheese of comparable quality to cheese made from unsupplemented control skim milks.  相似文献   

19.
Isabelle D. Prudencio 《LWT》2008,41(5):905-910
Petit suisse cheese was elaborated with substitution of 30% milk volume for cheese whey retentate (volumetric reduction ratio=5.0) obtained by ultrafiltration (cheese 1) and 100% milk (cheese 2). These were evaluated regarding physicochemical composition: moisture, ash, total solids, lipids, total proteins, acidity in lactic acid and pH. Natural pigments were added to the cheeses: Cabernet Sauvignon (Vitis vinifera L.) grape anthocyanins or (Beta vulgaris L.) beetroot betalains. The cheese samples were maintained at 6±1 °C for 40 days in light-impermeable packaging and evaluated regarding pigment stability by determining half-life time and percentage color retention. The results of the physicochemical analyses demonstrated that significant differences occurred between cheeses 1 and 2 regarding total solid content, moisture, protein, lipids and carbohydrates. The half-life time and percentage color retention values obtained for the anthocyanin and betalain extracts added to the cheeses were adequate for the shelf life of this product.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号