首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
《炭素》2017,(4)
通过对石墨烯(GN)制备、结构改性及与聚苯胺(PANI)、银粒子(Ag)的复合,设计了制备GN/PANI/Ag新型电极复合材料的工艺路线。首先利用Hummers氧化还原法将石墨氧化成氧化石墨烯,利用硼氢化钠将氧化石墨烯还原成石墨烯,将石墨烯与聚苯胺、银粒子反应,最后制得了GN/PANI/Ag复合材料。利用扫描电子显微镜(SEM),透射电子显微镜(TEM),热重分析(TG)和电导率测试对GN和GN/PANI/Ag的形貌,热稳定性和电化学性能进行了分析研究。结果表明,聚苯胺类衍生物、石墨烯以及银粒子三相在整个复合材料中共存,材料的复合使体系热稳定性和电化学性能得到提高。  相似文献   

2.
利用化学氧化法原位聚合制备了聚苯胺(PANI)/氧化石墨烯(GO)接枝复合材料。透射电子显微镜表明,PANI纳米颗粒均匀地分布在GO的表面;通过UV-vis光谱证实了GO和PANI之间存在着强烈的相互作用;充放电测试表明,PANI/GO纳米复合材料具有良好的电荷储存特性,最高比电容可达575 F/g。由于与GO之间的化学结合作用,PANI的充放电循环稳定性得到明显提高。  相似文献   

3.
利用电化学聚合法在导电玻璃ITO上原位制备了聚苯胺(PANI)/氧化石墨烯(GO)复合物薄膜。扫描电子显微镜表明,PANI/GO复合物呈颗粒状分布在ITO的表面;通过UV-vis光谱证实了GO和PANI之间存在着强烈的相互作用;充放电测试表明,PANI/GO复合膜具有良好的电荷储存特性,最高比电容可达265F/g,且具有较高的循环稳定性。  相似文献   

4.
采用原位聚合法制备聚苯胺(PANI)、PANI/氧化石墨烯(GO)复合材料和PANI/还原氧化石墨烯(RGO)复合材料。利用四探针测试仪、X射线衍射(XRD)仪、傅立叶变换红外光谱(FTIR)仪、热重(TG)分析仪和扫描电子显微镜(SEM)等对PANI及PANI/GO复合材料和PANI/RGO复合材料进行表征。电导率测试结果表明,当加入GO质量分数为50%时,先还原后聚合法制得PANI/RGO复合材料的导电率可达9.916 S/cm,RGO能有效提高复合材料的导电性;XRD和FTIR分析结果表明,GO和RGO都能较好分散在PANI中;TG分析结果表明,将GO还原为RGO后在小于250℃时能有效提高复合材料的热稳定性。通过原位聚合法能将GO和RGO较好分散在PANI中,形成较好的插层型复合材料,尤其是先还原后聚合法制得的PANI/RGO复合材料具有较好的导电性和热稳定性。  相似文献   

5.
采用氧化还原法制备氧化石墨烯(GO),通过原位插层聚合法制备出GO与导电聚苯胺(PANI)复合层状纳米材料。采用旋涂法将GO–PANI复合材料旋涂在自组装有十八烷三甲氧基硅烷的硅片上,对核糖核酸(DNA)在复合材料表面上的固定进行电化学性能测试。结果表明,DNA能够很好地固定在GO–PANI复合材料表面上,对将来开发出易于制备的电化学性能优良的DNA芯片提供了实验基础。  相似文献   

6.
首次以三步法制备了聚苯胺一石墨烯-Co3O4PANI—RGO-Co3O4纳米复合材料。利用F]'-IR,XRD,XPS和TEM对所制备的纳米复合材料进行表征,结果表明:PANI—RGO-Co3O4纳米复合材料中氧化石墨(GO)的含氧官能团数量大幅降低,GO已被还原成石墨烯(RGO);PANI和RGO之间具有较强的相互作用,且形成的-Co3O4纳米粒子分布在PANI—RGO表面,其粒径在5-15nm之间,该纳米复合材料有望在超级电容器材料、电极材料和吸波材料等领域有广泛的应用前景。  相似文献   

7.
采用石墨烯/聚苯胺(rGO/PANI)复合物制备超级电容器,以弥补二者各自的不足。改进了Hummers法制备氧化石墨烯(GO)。采用原位聚合法制备出PANI,最后利用水热法制备出rGO/PANI复合物。得到的复合材料的比电容最高值达198 F·g~(-1),明显比rGO的比电容(52 F·g~(-1))值高。此外,循环1 000圈后,复合材料的电容量衰减5%。  相似文献   

8.
以太西无烟煤为原料,采用催化热处理、改良Hummers氧化等方法,制备煤基氧化石墨烯(CGO),进而以CGO和聚苯胺(PANI)为前驱体,采用水热自组装法,制备得到PANI/石墨烯宏观体复合材料(3D-PCG)。采用FT-IR、XRD、Raman、SEM和TEM等技术,研究了材料的组成、结构和形貌,考察了3D-PCG的电化学性能。结果表明,PANI以纳米棒状形态均匀镶嵌在煤基石墨烯宏观体(3D-CG)的网状结构中;当PANI与CGO质量比为1:2时,3D-PCG的电化学性能优于PANI和3D-CG,其比电容可达663 F·g-1。  相似文献   

9.
以苯胺、聚丙烯接枝磺化苯乙烯、氧化石墨烯为反应原料,以盐酸为掺杂剂,通过苯胺原位聚合及大分子反应制备了氧化石墨烯/聚丙烯接枝磺化苯乙烯/聚苯胺(GO/PP-g-SPS/PANI)层状结构的复合材料。研究了复合材料的体积电阻率及反应物配比对复合材料体积电阻的影响。分别采用FTIR、XPS对复合材料进行了结构分析,并采用SEM对复合材料结构形貌进行了表征,同时研究了将其添加到PP中的抗静电性能。研究结果表明: GO/PP-g-SPS/PANI制备最佳配比为质量比mPP-g-SPSmGOmANI=30∶15∶1时,材料体积电阻率最小为120Ω·mm。添加到PP中导电逾渗阈值为0.7%(质量分数),PP材料的体积电阻率达到最低值4.5×1010Ω·mm,比纯PP降低了6个数量级,拉伸强度提高了2.8MPa。SEM形貌图表明GO/PP-g-SPS/PANI以GO为骨架表面层状蜂窝结构,聚合物大分子镶嵌在GO片层间,与PP共混物界面具有良好的相容性。  相似文献   

10.
石墨烯/聚苯胺复合阳极的制备及在MFC中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学氧化还原法制备高纯度石墨烯(GR),利用电化学修饰法得到石墨烯/聚苯胺(GR/PANI)膜阳极,采用红外光谱(FI-IR)、X射线衍射(XRD)、场发射扫描电镜(FESEM)对所制备复合电极进行了表征,采用循环伏安法(CV)、交流阻抗法(EIS)考察了复合电极的电化学性能。将GR/PANI膜阳极应用于固定床微生物燃料电池(MFC),考察了电池的产电性能。均匀地附着在石墨烯表面,GR/PANI膜电极具有良好可逆性,其电阻小、导电性良好。GR/PANI膜阳极应用于MFC,最大功率密度和开路电压分别为230.2 mW·m-2和834.6 mV,比未修饰阳极的最大功率密度和开路电压分别提高了110.6%和34.8%,GR/PANI膜阳极的表观内阻也由未修饰阳极的843.2Ω降低为469.4 Ω,且电池启动时间大大缩短,产电稳定性增强。结果表明,GR/PANI复合物是一种优良的电极材料,GR/PANI膜阳极MFC具有良好的产电性能。  相似文献   

11.
Y.F. Huang  C.W. Lin 《Polymer》2012,53(13):2574-2582
This study reports the synthesis of graphene oxide (GO)/polyaniline (PANI) nanocomposites with controllable morphologies through in-situ polymerization of aniline monomers in the presence of GO sheets. Specific reaction parameters including solution acidity, aniline concentration, and reaction temperature are used to control the final shape of the composite product. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images are used to explore the morphology of the composite. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), FT–IR and UV–vis spectrophotometers are utilized to characterize the intermediates and the final products of the GO/PANI composites. Experiment results reveal that the polymerization operated in low acidity and low temperature conditions inclines to form GO/PANI nanotubes. On the other hand, the polymerization operated in high acidity inclines to form either nanospheres or aligned nanofiber arrays. These different morphologies are resulted from different polymerization routes and the formation mechanisms of these different shapes of nanocomposites are explored. Among the various nanocomposites, the GO/PANI nanospheres exhibit a highest electrochemical surface area. This study provides a facile and effective strategy to control the morphology of GO/PANI nanocomposites with characteristic electrochemical property.  相似文献   

12.
Graphite oxide (GO)/ordered polyaniline (PANI) composites have been prepared through an in situ polymerization. TEM, XRD, FTIR and XPS analyses show that the PANI grew along the surface of exfoliated GO as a template to form a more ordered structure with high crystallinity during polymerization. Compared with pure PANI, both higher electrical conductivity and higher Seebeck coefficient of GO/PANI composites result from the increased carrier mobility, which is confirmed by Hall measurement. Strong interactions exist between graphene oxide and PANI, including electrostatic forces, hydrogen bonding and π–π stacking. There is no significant difference in thermal conductivity between GO/PANI composites and PANI. The maximum electrical conductivity and Seebeck coefficient of the composites reach 751 S m?1 and 28.31 μV K?1, respectively. The maximum thermoelectric figure of merit is up to 4.86 × 10?4, 2 orders of magnitude higher than that of pure PANI.  相似文献   

13.
A simple route to achieve covalently-grafted polyaniline (PANI)/graphene oxide (GO) nanocomposites has been developed. The synthesized composites showed a uniform hierarchical morphology of the PANI thin film and short rod-like nanostructures that had densely grown on the GO sheets, in contrast to the nonuniform morphology of noncovalently-grafted PANI/GO. Compared to pure PANI and noncovalently-grafted PANI/GO composites, the covalently-grafted PANI/GO composites possessed a much larger specific surface area and pore volume, which increased the accessible surface area for the redox reaction and allowed faster ion diffusion. This unique hierarchical morphology maximized the synergistic effect between PANI and GO, resulting in excellent electrochemical performance (capacitance 442 F/g of PANI/GO (6:1) vs. 226 F/g of pure PANI) and improved cycling stability (83% @ 2000 cycles of PANI/GO (6:1) vs. 54.3% @ 1000 cycles of pure PANI). The enhanced electrochemical performance demonstrates the advantage of the PANI/GO composites prepared via this covalent grafting method.  相似文献   

14.
用双子表面活性剂(GS)通过静电作用对氧化石墨烯(GO)进行插层改性制备了改性氧化石墨烯(GSGO),再以苯胺(An)为单体,过硫酸铵(APS)为引发剂,通过原位聚合法制备了GSGO/PANI复合材料。最后利用GSGO/PANI与水性醇酸树脂(WAR)共混得到了GSGO/PANI/WAR防腐涂层。采用FTIR,Raman,XRD和SEM等测试手段对GSGO和复合材料的形貌、结构进行了表征,结果表明,GS插入到GO的片层中,使得GSGO的层间距增大,且棒状的聚苯胺分散在GO的片层中,形成片状插层结构。动电位极化和电化学阻抗谱测试表明,GSGO/PANI/WAR 复合涂层比纯WAR涂层具有更高的耐腐蚀性能。当复合涂层中w(GSGO)=10% 时,涂层的耐腐蚀性能最好。腐蚀电流密度从9.82?10-6A/cm2减小至1.08?10-6A/cm2,腐蚀电从-0.56V增加到-0.28V,|Z|值可达到5.25?106 ohm.cm2。  相似文献   

15.
In this work, multi-walled carbon nanotube (MWNT) bonded graphene (M-GR) composites were prepared using the chemical reduction of graphite oxide (GO) and acid treated MWNTs with different ratios. The M-GR/polyaniline (PANI) nanocomposites (M-GR/PANI) were prepared using oxidation polymerization. The effect of the M-GR ratio on the electrochemical performances of the M-GR/PANI was investigated. It was found that the substrate 2D graphene was coated with 1D MWNTs by chemical reduction and the M-GR was further coated with PANI, leading to increased electrical properties by the π–π interaction between the M-GR and PANI. In addition, the electrochemical performances, such as the current density, charge–discharge, and specific capacitance of the M-GR/PANI were higher than those of graphene/PANI and the highest specific capacitance (1118 F/g) of the composites was obtained at a scan rate of 0.1 A/g for the PANI containing a 0.5 M-GR ratio compared to 191 F/g for the graphene/PANI. The dispersion of the MWNTs onto the graphene surface and the ratio of M-GR had a pronounced effect on the electrochemical performance of the PANI-based composites, which was attributed to the highly conductive pathway created by the M-GR incorporated in the PANI-based composites and the synergistic effect between M-GR and PANI.  相似文献   

16.
《Ceramics International》2021,47(18):25696-25707
Herein, we report a successful synthesis of supramolecularly assembled polyaniline/silver oxide/graphene oxide composite (PANI/Ag2O/GO) for enhanced NO2 gas sensing application. The PANI/Ag2O/GO composite was synthesized by facile stirring followed by an ultrasonication process. The prepared material was characterized by different techniques such as x-ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and Raman-scattering spectroscopy. The detailed analysis revealed that the average crystallite sizes of PANI/Ag2O and PANI/Ag2O/GO composites were found to be 37.37 nm and 41.55 nm, respectively. FESEM and TEM analysis showed coral-like rough-surfaced and extensively agglomerated morphology for PANI and ultrathin flexible sheet-like morphology for GO. Ag2O nanoparticles with diameters 20–30 nm were well incorporated in the GO sheets and PANI matrix in the case of PANI/Ag2O/GO composites. The synthesized materials were used to make resistive sensor devices that had a high response to NO2 gas. The fabricated sensors were examined at various temperatures to obtain the optimal sensing temperature. The fabricated NO2 gas sensor device based on PANI/Ag2O/GO composite exhibited a highest sensitivity of 5.85 for 25 ppm at an optimized temperature (100 °C) as compared to the pure PANI (2.5) and PANI/Ag2O composite (3.25). Further, the fabricated sensor device based on PANI/Ag2O/GO composite was also examined at different NO2 gas concentrations.  相似文献   

17.
To improve the thermal and mechanical properties of liquid silicone rubber (LSR) for application, the graphene oxide (GO) was proposed to reinforce the LSR. The GO was functionalized with triethoxyvinylsilane (TEVS) by dehydration reaction to improve the dispersion and compatibility in the matrix. The structure of the functionalized graphene oxide (TEVS‐GO) was evaluated by Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD), and energy dispersive X‐ray spectroscopy (EDX). It was found that the TEVS was successfully grafted on the surface of GO. The TEVS‐GO/LSR composites were prepared via in situ polymerization. The structure of the composites was verified by FTIR, XRD, and scanning electron microscopy (SEM). The thermal properties of the composites were characterized by TGA and thermal conductivity. The results showed that the 10% weight loss temperature (T10) increased 16.0°C with only 0.3 wt % addition of TEVS‐GO and the thermal conductivity possessed a two‐fold increase, compared to the pure LSR. Furthermore, the mechanical properties were studied and results revealed that the TEVS‐GO/LSR composites with 0.3 wt % TEVS‐GO displayed a 2.3‐fold increase in tensile strength, a 2.79‐fold enhancement in tear strength, and a 1.97‐fold reinforcement in shear strength compared with the neat LSR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42582.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号