首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas tungsten arc welds in aluminum–copper alloy AA2219-T6 were friction stir processed (to a depth of about 2 mm from the weld top surface) for improving their corrosion resistance. Unprocessed and friction stir processed welds were comparatively evaluated for their microstructural characteristics and corrosion resistance. Friction stir processing was found to result in substantial microstructural refinement with fine, uniformly distributed CuAl2 intermetallic particles. Friction stir processing was also found to result in a more uniform copper distribution in the weld metal, leading to significant increase in weld corrosion resistance. This work demonstrates that friction stir processing is an effective strategy for overcoming corrosion problems in aluminum–copper alloy fusion welds.  相似文献   

2.
Dissolution of second phase particles (CuAl2) present in AA 2219 aluminium improves the corrosion resistance of the alloy. Two surface treatment techniques, viz., solid state friction stir processing and fusion based laser melting lead to the reduction in CuAl2 content and the effect of these processes on the corrosion behaviour of the alloy is compared in this study. Potentiodynamic polarization and electrochemical impedance spectroscopy tests were carried out to compare corrosion behaviour. The corrosion resistance achieved by friction stir processing is comparable to that obtained by the laser melting technique.  相似文献   

3.
Friction stir processing of a D2 tool steel layer fabricated by laser cladding was carried out to modify its as-cast microstructure. The microstructural evolution in the stir zone was observed and micro-Vickers hardness was measured. A maximum hardness of 857 HV was obtained by friction stir processing at 200 rpm. This value is higher than that of the clad layer when it is subjected to austenitizing heat treatment without friction stir processing. This superior property is attributed to the decrease of volume fraction of retained austenite after friction stir processing. The friction stir processing condition with low heat input led to high volume fractions of fine M7C3 carbide particles and martensite.  相似文献   

4.
搅拌摩擦焊焊缝塑性流动规律的数值模拟   总被引:1,自引:0,他引:1  
王训宏  王快社  沈洋  徐可为  胡锴 《材料导报》2006,20(12):127-128,131
使用FLUENT流体工程仿真软件对搅拌摩擦焊缝金属的塑性流动进行了数值模拟;初步得出了搅拌摩擦焊焊缝塑性流体流动规律.实验结果表明:随着距轴肩和搅拌针距离的增大,速度场开始减弱,焊缝金属由顶面向底面、由搅拌区向旋转区的流动也随之减弱.  相似文献   

5.
In the present study, the joining of interstitial free steel and commercial pure aluminium was carried out by friction stir welding (FSW) technique using tool rotational speeds of 600, 900, 1200 rpm and traverse speed of 100 mm/min. The microstructure and micro-hardness of the weld interface have been investigated. Optical microscopy was used to characterize the microstructures of different regions of friction stir welding joints. The scanning electron microscopy-back scattered electron (SEM-BSE) images show the existence of the different reaction layers in the welded zone. The Al3Fe intermetallic compound has been observed in the weld interface and their thickness increase with the increase in tool rotational speed. Tensile strength was also evaluated and maximum tensile strength of ∼123.2 MPa along with ∼4.5% elongation at fracture of the joint have been obtained when processed at 600 rpm tool rotational speed.  相似文献   

6.
Aluminum surface composites have gained huge importance in material processing due to their noble tribological characteristics. The reinforcement of solid lubricant particles with hard ceramics further enriches the tribological characteristics of surface composites. In the current study, friction stir processing was chosen to synthesize hybrid surface composites of aluminum containing B4C and MoS2 particles with anticipated improved tribological behavior. B4C and MoS2 powder particles in 87.5: 12.5 ratio were reinforced into the AA6061 by hole and groove method. Microstructural observations indicated that reinforcement particles are well distributed in the matrix. The hardness and wear resistance of hybrid surface composites improved as compared to the base material, due to well distributed abrasive B4C and solid lubricant MoS2 particles in AA6061. The hybrid surface composites achieved ∼32 % increased average hardness as compared to the base material. Hole method revealed ∼13 % better wear resistance compared to the groove method for friction stir processed hybrid surface composite, attributing to an improved homogeneity of particle distribution shown by zigzag hole pattern. Moreover, friction stir processed AA6061 without reinforcement particles exhibited reduced hardness and wear resistance due to loss of strengthening precipitates during multi-pass friction stir processing.  相似文献   

7.
In this research, microstructure and mechanical properties of 5052Al/Al2O3 surface composite fabricated by friction stir processing (FSP) and effect of different FSP pass on these properties were investigated. Two series of samples with and without powder were friction stir processed by one to four passes. Tensile test was used to evaluate mechanical properties of the composites and FSP zones. Also, microstructural observations were carried out using optical and scanning electron microscopes. Results showed that grain size of the stir zone decreased with increasing of FSP pass and the composite fabricated by four passes had submicron mean grain size. Also, increase in the FSP pass caused uniform distribution of Al2O3 particles in the matrix and fabrication of nano-composite after four passes with mean cluster size of 70 nm. Tensile test results indicated that tensile and yield strengths were higher and elongation was lower for composites fabricated by three and four passes in comparison to the friction stir processed materials produced without powder in the similar conditions and all FSP samples had higher elongation than base metal. In the best conditions, tensile strength and elongation of base material improved to 118% and 165% in composite fabricated by four passes respectively.  相似文献   

8.
We propose a stationary shoulder friction stir process (SSFSP) to produce a smooth surface finish. The use of a stationary shoulder tool contributes to reducing the heat input during friction stir processing (FSP). Hence, a stationary shoulder tool is advantageous for FSP in heat sensitive alloys like magnesium. The present short communication investigates the surface finish of AZ31B magnesium alloy processed by SSFSP without using additional cooling. Surface analysis of the processed region was carried out by 2D and 3D surface mapping using digital microscopy. The surface mapping indicated that there was very little flash generation on the processed zone, while 3D mapping quantified the surface roughness in the longitudinal as well as transverse directions of the processing zone.  相似文献   

9.
Plates of aluminum alloys 2219-T62 were joined in a butt joint by friction stir welding. The residual stresses on the top and bottom surfaces were measured using the hole-drilling strain-gauge method. In the test specimen, it was found that the residual stresses on the top surface peaked at about 171 MPa, while the value reached 243 MPa for the weld with tunnel defect and had the conventional “M” profile with tensile stress peaks in the heat-affected zone. Those attached on the bottom surface had the inverted “V” profile with tensile stress peaks in the weld centre and the corresponding value was 99.4 MPa. Meanwhile, with the increase of rotary speed, the longitudinal residual stress decreased on the top surface, but increased on the bottom surface.  相似文献   

10.
采用平板滑动摩擦实验研究不同接触压力下合金化热镀锌钢板的摩擦因数。结果表明:在相同的变形条件下,低强度基板加工硬化较强烈;在相同接触压力下,镀锌板基板强度越高,摩擦因数越低;随着接触压力增大,低强度镀锌板摩擦因数由0.154降为0.136,高强度镀锌板摩擦因数由0.140降至0.135;随着接触压力的进一步增加,摩擦因数降低的趋势变缓。基于黏着理论深入分析了基板强度影响摩擦因数的原因,得出如下结论:摩擦因数主要由α值(总的实际接触面积中模具和镀层直接接触部分百分比)和基板表面显微硬度决定;基板强度是决定基板表面显微硬度和α值的主要因素;随着接触压力增大,不同的加工硬化率会使不同强度基板的表面显微硬度逐渐接近,致使α差异减小,最终使基板强度对镀锌板摩擦因数影响减弱。  相似文献   

11.
目的分析超声冲击对铝合金搅拌摩擦焊成形后接头的组织及耐蚀性的作用效果。方法采用超声冲击设备对2A12铝合金搅拌摩擦焊接头表面进行超声冲击处理,并对超声冲击前后接头的显微组织、显微硬度以及耐腐蚀性能进行了分析。结果经过超声冲击处理后的铝合金接头上表面会产生一层塑性变形层,并且塑性层内位错密度增大,使表层金属得到一定程度的加工硬化,促使冲击后接头各区域的表面硬度明显提高,冲击后接头热机械影响区和热影响区硬度提高达60%以上;腐蚀浸泡试验发现,超声冲击后接头的点腐蚀程度较超声冲击前明显减缓,腐蚀速率约是冲击前的1/2。结论超声冲击有效改善了铝合金搅拌摩擦焊接头区域材料过时效的软化现象,并且有效改善了接头的抗腐蚀性能。  相似文献   

12.
Superplastic forming has now become conventional for forming complex parts from sheet metals. In many superplastically formed aerospace components, only a selective region undergoes superplastic forming. In those cases, instead of selecting a material exhibiting superplastic properties, a light weight and low cost material can be chosen and its microstructure can be modified locally by the Friction Stir Processing (FSP) technique. In this work, AZ31B magnesium alloy is chosen, and friction stir processing is performed by varying the process parameters, such as tool axial force, tool traversing speed and tool rotational speed. The process parameter that produced equiaxed grains in the stirred zone with a grain size less than 10 μm is selected. With this parameter, single pass FSP, multiple pass FSP without overlapping and multiple pass FSP with overlapping are performed on the AZ31B magnesium alloy sheets and their superplastic behaviour was examined. Also the theoretical modelling was carried out to determine the strain rate sensitivity for the friction stir processed AZ31B magnesium alloy and for the nonprocessed AZ31B magnesium alloy. It is found that the strain rate sensitivity for the friction stir processed component has increased, when compared to the base metal.  相似文献   

13.
目的研究不同转速的焊缝性能变化对组织的影响,以期为高转速搅拌摩擦焊工艺参数的优化和更大范围的应用提供指导。方法在3000~8000 r/min的高转速范围内对3A21-O态铝合金进行搅拌摩擦焊试验,焊后分析了焊缝成形特征和晶粒形态并测试了接头截面显微硬度。结果当转速由1000~4000 r/min区间升高至5000~8000 r/min区间时,焊核宽度急剧增大了近50%。这是由于焊具产热机制以滑移摩擦为主向以粘着摩擦为主转变,导致上述焊核宽度增大的行为。随着转速的增大,焊缝温度呈现出常规搅拌摩擦焊工艺中鲜见的先增大而后趋于稳定的变化趋势;温度随转速的这一演变特征导致焊缝焊核区的亚结构数量比例以及显微硬度都随转速呈现出与此相近的演变规律。结论在高转速搅拌摩擦焊中,转速提高能提高焊缝性能,且增强的焊缝性能能够在较宽的高转速区间内保持相对稳定的状态。  相似文献   

14.
A welding procedure based on using two-pass laser scans is introduced for dissimilar joining of overlapped galvanized high-strength dual-phase (DP) steel DP590 to aluminum alloy (AA) 6061 sheets. The first pass is based on a defocused laser spot that scans across the top of the two overlapped sheets and heats the zinc coating at the faying surface to be melted and partially vaporized, while the second pass is executed with a focused laser spot in order to perform the welding. Completely defect-free galvanized steel to aluminum lap joints were obtained by using this two-pass laser welding procedure. An on-line machine vision system was applied to monitor the keyhole dynamics during the laser welding process. An energy-dispersive X-ray spectroscopy (EDS) was carried out to determine the atomic percent of zinc, aluminum, and iron in the galvanized steel to aluminum lap joints. Mechanical testing and micro-hardness test were conducted to evaluate the mechanical properties of the galvanized steel to aluminum lap joints. The experimental results showed that the lap joint of galvanized steel to aluminum obtained by the two-pass laser welding approach had a higher failure value than those joints obtained when the zinc at the faying surface was mechanically removed under the same welding speed and laser power.  相似文献   

15.
In the current work, composites of Al5083 aluminum alloy and carbon nanotubes were developed by friction stir processing. Grain size reduction was observed in the composite from a starting size of 115 μm±4.6 μm to 11 μm±3.3 μm. Higher hardness, yield strength and ultimate tensile strength were measured for the composite at the cost of losing ductility compared with friction stir processed Al5083 and base alloy. This behavior can be understood by considering the influence of grain size and carbon nanotubes. Machining studies carried out by conducting drilling experiments demonstrate decreasing cutting forces for the composite compared with friction stir processed Al5083. However, compared with base alloy, composite exhibited higher cutting forces at all of the cutting parameters. Corrosion behavior of the materials assessed by electrochemical tests demonstrates the promising effect of grain refinement on enhancing the corrosion resistance of friction stir processed Al5083. However, presence of carbon nanotubes marginally decreased the corrosion resistance of composite compared with friction stir processed Al5083. From the results, it can be understood that the addition of carbon nanotubes significantly enhance the mechanical properties and machinability. However, addition of carbon nanotubes on decreasing the corrosion performance is a noteworthy observation.  相似文献   

16.
A surface composite layer enhances the mechanical characteristics of a surface while retaining the properties of the base material. Friction stir processing (FSP) is a method for forming surface metal matrix composites (SMMCs) that reinforce a surface with particles. In the current study, a new method entitled friction stir vibration processing (FSVP) was applied to form SMMCs on the surface of AZ91 magnesium alloy with SiC particles as the reinforcing particles. Contrary to FSP, in FSVP, the workpiece was vibrated normal to the processing line while the tool rotated and traversed. The microstructure and mechanical properties of friction stir (FS) and friction stir vibration (FSV) processed specimens were evaluated. Additionally, the effects of vibration frequency and process parameters on different characteristics of FS and FSV processed specimens were studied. The results showed that the stir zone grains for FSV processed specimens were finer than those for FS processed specimens, and the second phase particles (SiC particles) had a more homogenous distribution in the former specimens than in the latter specimens. This was related to the effect of workpiece vibration during FSVP, which increased the material deformation and led to enhanced dynamic recrystallization and the breakdown of agglomerated SiC particles. The results indicated that the stir zone grain size decreased, and the distribution homogeneity of the SiC particles increased as vibration frequency increased. It was also observed that the stir zone grain size increased, and the mechanical properties of the processed specimens decreased as tool rotation speed increased.The full text can be downloaded at https://link.springer.com/content/pdf/10.1007%2Fs40436-019-00288-9.pdf  相似文献   

17.
目的研究激光复合织构薄壁弯管模具的成型性能。方法分析模具与管件的摩擦对弯管成型的影响规律。利用激光毛化和微造型技术对弯管模具的夹块、压块、防皱板进行表面复合织构,完成了绕弯成型对比试验,采用直接测量法对成型件的外壁减薄率和截面畸变程度进行检测,结果弯管模具经过复合织构后,成型件外壁减薄率降低了0.5%~4.5%,截面畸变程度减轻了0.8%~2%,对于表面质量较好的不锈钢管,激光复合织构弯管模具能够使成型件表面保持较低的表面粗糙度和良好的光泽度。结论将激光复合织构技术应用于弯管模具,能够显著提高成型管件的质量。  相似文献   

18.
Friction stir processing (FSP) is one of the important severe plastic deformation techniques developed for enhancing mechanical properties of metal sheets, such as the tensile strength and the elongation. Recently, magnesium alloy AZ31 is widely used in automobile industries due to its light-weight material property. In this investigation, the effect of overlapping ratio (OR) with different shoulder diameters (SDs) on the mechanical properties and formability of the friction stir processed (FSP) Mg AZ31B alloy have been studied. The experiments were carried out with overlapping ratios of 0, 0.5 and 1. The results revealed that the OR with 1 showed better mechanical properties and formability than others. Also the tool with 18 mm shoulder diameter produced superior properties than other shoulders.  相似文献   

19.
In this study, friction stir processing (FSP) was utilized to incorporate SiC and MoS2 particles into the matrix of an A356 Al alloy to form surface hybrid composite. A constant tool rotation rate of 1600 rpm and travel speed of 50 mm/min with a tool tilt angle of 3° was used. The wear resistance of the processed samples improved significantly as compared to that of the as-cast alloy. Microstructural analyses showed a uniform distribution of reinforcement particles inside the nugget zone, and a MoS2 rich mechanically mixed layer (MML) on the top of worn surface. This MoS2 layer is considered to stifle plastic deformation and thus, to improve tribological properties of the alloy.  相似文献   

20.
Ultrasonic vibration-assisted laser surface processing that involves application of vertical ultrasonic vibrations to the Ti-6 Al-4 V alloy substrates while being irradiated with a CO_2 laser was performed for the development of laser melted and textured surfaces with potential applications in biomedical implants.The laser processing resulted in very consistent repeating undulating grooved surfaces, and the undulations were significantly more pronounced in the samples processed with higher ultrasonic power outputs.The phase evolution, studied by x-ray diffraction, confirmed that the laser processing triggered transformation of globular α→ acicular α and martensitic α' as well as increased amounts of retained α phases,which were also reflected in the microscopic analysis. The surface texture developed by laser processing resulted in increased surface wettability with increasing ultrasonic power output. The textured surfaces exhibited marked decrease in coefficients of friction during sliding wear testing performed under simulated body fluid due to lubricant entrainment within the textured grooves. The texturing also resulted in significant reduction in surface contact area during the wear process, which considerably reduced the overall wear rates due to abrasive wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号