首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a response to the rampant increase in research activity within reliability in the past few decades, and to the lack of a conclusive framework for composite applications, this article attempts to identify the most relevant reliability topics to composite materials and provide a selective review. Available reliability assessment methods are briefly explained, referenced and compared within an unified formulation. Recent developments to confer efficiency in computing reliability in large composite structures are also highlighted. Finally, some general conclusions are derived along with an overview of future directions of research within reliability of composite materials and their influence on design and optimization.  相似文献   

2.
Fine-grained silicon nitride ceramics were investigated mainly for their high-strain-rate plasticity. The preparation and densification of fine silicon nitride powder were reviewed. Commercial sub-micrometer powder was used as raw powder in the “as-received” state and then used after being ground and undergoing classification operation. Chemical vapor deposition and plasma processes were used for fabricating nanopowder because a further reduction in grain size caused by grinding had limitations. More recently, nanopowder has also been obtained by high-energy milling. This process in principle is the same as conventional planetary milling. For densification, primarily hot pressing was performed, although a similar process known as spark plasma sintering (SPS) has also recently been used. One of the advantages of SPS is its high heating rate. The high heating rate is advantageous because it reduces sintering time, achieving densification without grain growth. We prepared silicon nitride nanopowder by high-energy milling and then obtained nanoceramics by densifying the nanopowder by SPS.  相似文献   

3.
Comparative experimental investigations of µ-grinding and µ-rotary ultrasonic machining (µ-RUM) were made on borosilicate and Zerodur materials to know the efficacy of the processes for micro electro mechanical system (MEMS) application. The electroplated diamond tool of Ø 300 µm for drilling operation and Ø 300 µm to Ø 6 mm for milling operation has been tried in the computer numerical control (CNC) machine with an HSK63 ultrasonic actuator. A suitable interface has been developed to hold the micro tool with the ER11 taper in the existing ER20 collet ultrasonic tool holder. Cutting force, edge-chipping area, and taper in drilling operation; and surface finish, material removal mode, specific energy and un-deformed chip thickness in milling operation were evaluated for both processes under the same material removal rate conditions. The experimental results showed that µ-RUM could perform in a less spindle speed machine as compared to µ-grinding. It was inferred that the maximum and minimum amount of reduction in cutting force, edge chipping, and taper were found to be (49.3%, 10.8%), (87%, 40%), and (95.56%, 4.76%), respectively, in µ-RUM compared to µ-grinding for drilling operation. It was also concluded that surface finish and ductile mode of fracture were higher in µ-RUM compared to µ-grinding for the milling operations. These effects were more pronounced as tool size decreased.  相似文献   

4.
In recent years, the use of flax fibres as reinforcement in composites has gained popularity due to an increasing requirement for developing sustainable materials. Flax fibres are cost-effective and offer specific mechanical properties comparable to those of glass fibres. Composites made of flax fibres with thermoplastic, thermoset, and biodegradable matrices have exhibited good mechanical properties. This review presents a summary of recent developments of flax fibre and its composites. Firstly, the fibre structure, mechanical properties, cost, the effect of various parameters (i.e. relative humidity, various physical/chemical treatments, gauge length, fibre diameter, fibre location in a stem, oleaginous, mechanical defects such as kink bands) on tensile properties of flax fibre have been reviewed. Secondly, the effect of fibre configuration (i.e. in forms of fabric, mat, yarn, roving and monofilament), manufacturing processes, fibre volume, and fibre/matrix interface parameters on the mechanical properties of flax fibre reinforced composites have been reviewed. Next, the studies of life cycle assessment and durability investigation of flax fibre reinforced composites have been reviewed.  相似文献   

5.
The objective of this research was to study the machining of superalloy VAT32® using alumina-based ceramic tool without cutting fluid, applying different machining parameters to evaluate the surface finish of parts, vibration and main wear of tools. For this, a turning process with a linear trajectory of 30 mm was performed, in which were collected data vibration and surface roughness of the stretch, as well as wear and damage in the tools. The turning tests were performed utilizing cutting speeds of 270, 280 and 300 m/min, a feed of 0.10, 0.18 and 0.25 m/rev and a cutting depth of 0.50 mm. With results, it was identified that the feed influenced significantly both the vibration and the system, since the cutting speed influenced only the vibration. Being that the best results happened for the smaller feed and greater cutting speed. It concludes that the machining of superalloy VAT32® with ceramic tool introduced herself promising.  相似文献   

6.
Worldwide, the poultry meat processing industry generates large quantities of feather by-products that amount to 40 × 109 kg annually. The feathers are considered wastes although small amounts are often processed into valuable products such as feather meal and fertilisers. The remaining waste is disposed of by incineration or by burial in controlled landfills. Improper disposal of these biological wastes contributes to environmental damage and transmission of diseases. Economic pressures, environmental pressures, increasing interest in using renewable and sustainable raw materials, and the need to decrease reliance on non-renewable petroleum resources behove the industry to find better ways of dealing with waste feathers. A closer look at the structure and composition of feathers shows that the whole part of a chicken feather (rachis and barb) can be used as a source of a pure structural protein called keratin which can be exploited for conversion into a number of high-value bioproducts. Additionally, several technologies can be used to convert other biological components of feathers into high value-added products. Thus, conversion of the waste into valuable products can make feathers an attractive raw material for the production of bioproducts. In this review, possible applications of chicken feathers in a variety of technologies and products are discussed. Thus, using waste feathers as a valuable resource can help the poultry industry to dispose of the waste feathers in an environmentally sustainable manner that also generates extra income for the industry. Their valorisation can result in their sustainable conversion into high-value materials and products on the proviso of existence or development of cost-effective technologies for converting this waste into the useful products.  相似文献   

7.
This experimental study is concerned with the influence of metallic (Ti) and ceramic (SiC) reinforcements in an aluminumfsilicon (AlSi) alloy, when regarding tensile properties and wear behavior. Several micron sized particulate reinforced composites were produced by hot-pressing technique: AlSi–SiC and AlSi–Ti composites and AlSi-(Ti–SiC) hybrid composites.Regarding tensile properties, all composites presented higher ultimate tensile strength (UTS) than the AlSi matrix, with the highest UTS being attained by a hybrid composite (AlSi-11.25%Ti–5%SiC).Regarding wear behavior, reciprocating pin-on-plate wear tests were performed for unreinforced AlSi; AlSi–Ti composites and AlSi-(Ti–SiC) hybrid composite against a gray cast iron (GCI) counterface. The wear mechanisms for all the tested tribopairs are presented and discussed. It was observed that the wear behavior of the AlSi–Ti/GCI and also AlSi-(Ti–SiC)/GCI tribopairs are improved when compared with the AlSi/GCI system. AlSi-11.25%Ti-5%SiC hybrid composite exhibited the highest improvement in wear rate.  相似文献   

8.
Bast fibres are defined as those obtained from the outer cell layers of the stems of various plants. The fibres find use in textile applications and are increasingly being considered as reinforcements for polymer matrix composites as they are perceived to be “sustainable”. The fibres are composed primarily of cellulose which potentially has a Young’s modulus of ~140 GPa (being a value comparable with man-made aramid [Kevlar/Twaron] fibres). The plants which are currently attracting most interest are flax and hemp (in temperate climates) or jute and kenaf (in tropical climates). Part 2 of this review will consider the prediction of the properties of natural fibre reinforced composites, manufacturing techniques and composite materials characterisation using microscopy, mechanical, chemical and thermal techniques. The review will close with a brief overview of the potential applications and the environmental considerations which might expedite or constrain the adoption of these composites.  相似文献   

9.
Infusion processing methods have become a popular manufacturing alternative to the autoclave procedure to meet the increased demand for high-performance composites with shorter production times and lower cost. These processes are primarily limited to low viscosity, thermosetting matrices that are inherently brittle, and hence are susceptible to impact damage. It has been shown that introducing a thermoplastic modifier to create a “three-phase composite” can improve the ability of the laminate to resist damage formation and growth, and enhance a damaged laminate's structural performance. A comprehensive review is presented herein of the state-of-the-art on the incorporation of a thermoplastic phase into a fibre-reinforced thermosetting composite laminate to improve its damage resistance and tolerance properties when subjected to a low-energy impact. Several material properties govern the response of a laminate to an impact event, and for this reason, a discussion on the impact damage process and post-impact performance is also presented. Techniques from two main areas of toughening are considered — namely, bulk resin modification and interlaminar toughening. The improvements in laminate performance brought about by the thermoplastic additive are discussed, and each technique is assessed based on its suitability for inclusion in infusion manufacturing processes.  相似文献   

10.
The lithium disilicate glass–ceramics composites reinforced and toughened by tetragonal zirconia (3Y-TZP) were prepared by hot-pressing at 800 °C with varying zirconia content from 0 to 30 wt.%. In the case of the composites of small zirconia content (below 10 wt.%), zirconia acted as nucleation agent primarily, and the microstructure was refined continuously. The morphology of Li2Si2O5 crystals transformed from rod-shaped to spherical structure, and the mechanical properties decreased inevitably. For the composites of large zirconia content (from 15 wt.% to 30 wt.%), however, zirconia restrained the phase separation of glass. The morphology of Li2Si2O5 crystals transformed to rod-shaped structure again. The mechanical properties of the composite at zirconia content of 15 wt.% increased up to 340 MPa and 3.5 MPa m1/2 which were much higher than those of zirconia-free glass–ceramics. The improved properties were attributed mainly to compressive stress reinforcement, phase transformation and bridging toughening mechanisms.  相似文献   

11.
《Composites Part A》1999,30(4):399-403
Molten aluminum reduces and penetrates silicate ceramics to produce a metal–ceramic composite which yields an Al2O3 skeleton infiltrated with a solidified Al–Si alloy. Penetration experiments have been used to study the influence of p(O2), temperature and substrate composition on penetration kinetics and composite microstructure. The limiting kinetic step for Al penetration is the chemical reaction between Al and the ceramic. For dense substrates the maximum reaction rates are observed between 1000–1200°C and are independent of p(O2). For porous substrates it is necessary to reach a critical temperature or p(O2), before infiltration starts. Increasing the Si concentration in the molten Al results in the reduction of the reaction rates.  相似文献   

12.
HAPEX trade mark (40 vol % hydroxyapatite in a high-density polyethylene matrix) and AWPEX (40 vol % glass-ceramic apatite-wollastonite in a high-density polyethylene matrix) are composites designed to provide bioactivity and to match the mechanical properties of human cortical bone. HAPEX trade mark has had clinical success in middle ear and orbital implants, and there is great potential for further orthopaedic applications of these materials. However, more detailed in vitro investigations must be performed to better understand the biological interactions of the composites. In this study, the bioactivity of each material was assessed. Specifically, the effects of controlled surface topography and ceramic filler composition on apatite layer formation in acellular simulated body fluid (SBF) with ion concentration similar to those of human blood plasma were examined. Samples were prepared as 1 x 10 x 10 mm(3) tiles with polished, roughened or parallel-grooved surface finishes, and were incubated in 20 ml of SBF at 36.5 degrees C for one, three, seven or 14 days. The formation of an apatite layer on the composite surface after immersion was demonstrated by thin-film X-ray diffraction, environmental scanning electron microscopy and energy dispersive X-ray analysis. Variations in sample weight and solution pH over the period of incubation were also recorded. Significant differences were found between the two materials tested, with greater bioactivity in AWPEX than HAPEX trade mark. Results also showed surface topography to be important, with rougher samples correlated to earlier apatite formation. Osteoblast-like cells proliferated favourably on both composite materials, with many filopodia connections, preferential attachment to ceramic particles and contact guidance effects evident.  相似文献   

13.
Carbon-micro or nano silicon carbide–boron carbide (C-micro or nanoSiC–B4C) composites were prepared by heating the mixtures of green coke and carbon black as carbon source, boron carbide and silicon at temperature of 1,400 °C. Green coke reacts with silicon to give micron sized silicon carbide while the reaction between silicon and carbon black gives nano silicon carbide in the resulting carbon–ceramic composites. The green coke was coated with a suitable coal tar pitch material and used to develop carbon-(micro or nano) silicon carbide–boron carbide composites in a separate lot. The composites were characterized for various properties including oxidation resistance. It was observed that both types of composites made from uncoated as well as pitch-coated green coke exhibited good oxidation resistance at 800–1,200 °C. The density and bending strength of composites developed with pitch-coated green coke improved significantly due to the enhanced binding of the constituents by the pitch.  相似文献   

14.
Recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling, atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.  相似文献   

15.
Abstract

Nanostructured materials have gained importance in recent years due to their significantly enhanced properties. In particular, electrochemistry has a special role in producing a variety of nanostructured materials. In the current review, we discuss the superiority of electrochemical deposition techniques in synthesizing various nanomaterials that exhibit improved characteristics compared with materials produced by conventional techniques, as well as their classification, synthesis routes, properties and applications. The superior properties of a nanostructured nickel coating produced by electrochemical deposition are outlined. The properties of various nanostructured coating materials produced by electrochemical techniques are also described. Finally, the importance of nanostructured coatings in industrial applications as well as their potential in future technologies is emphasized.  相似文献   

16.
Nanostructured materials have gained importance in recent years due to their significantly enhanced properties. In particular, electrochemistry has a special role in producing a variety of nanostructured materials. In the current review, we discuss the superiority of electrochemical deposition techniques in synthesizing various nanomaterials that exhibit improved characteristics compared with materials produced by conventional techniques, as well as their classification, synthesis routes, properties and applications. The superior properties of a nanostructured nickel coating produced by electrochemical deposition are outlined. The properties of various nanostructured coating materials produced by electrochemical techniques are also described. Finally, the importance of nanostructured coatings in industrial applications as well as their potential in future technologies is emphasized.  相似文献   

17.
《Composites Part A》2000,31(3):197-220
Current literature on knitted composites tends to address the aspects of manufacture and characterisation separately. This paper aims to bring together these two sets of literature to provide the reader with a comprehensive understanding of the subject of knitted composites. Consequently, this paper contains a detailed outline of the current state of knitting technology for manufacturing advanced composite reinforcements. Selected mechanical properties of knitted composites, and some of the predictive models available for determining them are also reviewed. To conclude, a number of current and potential applications of knitting for engineering composites are highlighted. With a comprehensive review of the subject, it is believed that textile engineers would be able to better understand the requirements of advanced composites for knitting, and, by the same token, composites engineers can have a better appreciation of the capability and limitations of knitting for composite reinforcement. This should lead to more efficient usage and expanded application of knitted composites.  相似文献   

18.
The current literature on three-dimensional (3D) needle-punched composites tends to address the aspects of preforms fabrication and composites characterization respectively. This paper aims to bring together these two aspects to provide readers with a comprehensive understanding of the subject of 3D needle-punched reinforcements for composites. Consequently, this paper contains a detailed outline of the current state of 3D needle-punched technology for manufacturing advanced composite preforms. Properties of 3D needle-punched composites and some of the predictive models available for determining these properties are also reviewed. To conclude, a number of current and potential applications of 3D needle-punched preforms for engineering composites are highlighted, and issues impeding the use of 3D needle-punched composites are also summarized.  相似文献   

19.
Bast fibres are defined as those obtained from the outer cell layers of the stems of various plants. The fibres find use in textile applications and are increasingly being considered as reinforcements for polymer–matrix composites as they are perceived to be “sustainable”. The fibres are composed primarily of cellulose which potentially has a Young’s modulus of ~140 GPa (being a value comparable with man-made aramid [Kevlar/Twaron] fibres). The plants which are currently attracting most interest are flax and hemp (in temperate climates) or jute and kenaf (in tropical climates). This review paper will consider the growth, harvesting and fibre separation techniques suitable to yield fibre of appropriate quality. The text will then address characterisation of the fibre as, unlike man-made fibres, the cross section is neither circular nor uniform along the length.  相似文献   

20.
The prospect of extending natural biological design to develop new synthetic ceramic–metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic–metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al2O3/Al–Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 µm were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa√m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号