首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dominance of the spark eroding process in complex ceramic components has promoted a significant growth analysis in the ceramic composites domain in modern manufacturing industries. The latest developments in ceramic components are concentrated on both the enhancement of the mechanical properties and the machinability of complex 3D parts while using spark EDM. The current (I), pulse on time (Ton), pulse off time (Toff), and dielectric flushing pressure (DP) are considered sparking parameters for the machining of a Si3N4–TiN ceramic composite. These composites find their application in high-temperature environments, viz. metal forming, extrusion dies, turbine blade, and non-ferrous molten metal handling components. Taguchi's orthogonal array (OA), L18, has been used to design the experiments. The optimal machining inputs are determined by the grey relational grade (GRG), which is attained from the grey relation analysis (GRA) for various response characteristics, such as the material removal rate (MRR), tool wear rate (TWR), circularity (CIR), cylindricity (CYL), and perpendicularity (PER). The significant parameters are identified via an analysis of variance (ANOVA). Finally, the optimized process parameters resulting in a higher MRR, lower TWR, lower form tolerance, and decreased orientation tolerance are verified through a confirmation test demonstrating that sparking process responses can be effectively improved.  相似文献   

2.
This work represents a feasibility study for the newly proposed vegetable oil-based green dielectric fluids, biodielectric1 (BD1) and biodielectric2 (BD2) for electric discharge machining (EDM). Comparative analyses for BD1, BD2, and kerosene have been studied to assess the performance in terms of material removal rate (MRR), electrode wear rate (EWR), and relative wear ratio (RWR) for P20 + cold-worked plastic injection mold steel using electrolytic grade copper electrode. Current, gap voltage, pulse on time (Ton), and pulse off time (Toff) have been chosen as input parameters, and one variable at a time approach has been used for designing experimental plan for investigating the feasibility of the newly suggested fluids. The results obtained show that the performance of the newly suggested biodielectrics BD1 and BD2 is better than commercially used hydrocarbon-based dielectric, i.e., kerosene, for MRR and RWR. Analysis of variance results indicated that current is the most influencing parameter for MRR and EWR, while Ton is the most significant parameter for RWR. Under the influence of current, BD1 and BD2 produced 38% and 165% improvement in MRR, respectively. Moreover, BD1 and BD2 resulted 30% higher and 7% lower RWR, respectively, under the influence of Ton.  相似文献   

3.
The objective of this research work is to correlate the impact of thermally induced workpiece hardness with electric discharge machining (EDM) performances and establishment of the modified property responsible for the deviation in change in behavior of output responses in sinking electrical discharge machining process. The response surface methodology with central composite design approach was applied with four controllable input parameters such as pulse-on-time (Ton), pulse-off time (Toff), peak current (IP), and gap voltage (V) for experimental comparative study. In this current analysis, material removal rate, tool wear rate, and energy density were chosen as the desired response variables. It was observed that change in hardness through induction thermal hardening process of the base alloy had a predominant effect on the change in output responses such as material removal rate, tool wear rate, and energy density with strong confirmation. The modified electrical property associated with enhanced workpiece hardness was primarily responsible for alteration in EDM process behaviors. This preliminary assessment for the deviation in the performance of the EDM process with respect to change in hardness will be quite useful for the control settings in the job shop production planning for processing and modifying properties of induction hardened alloy steels.  相似文献   

4.
In this research, an investigation and experimental work were carried out on electric discharge machining (EDM) of intermetallic base MoSi2-SiC ceramic composite with copper electrode. It is extremely difficult to machine MoSi2-SiC composite using conventional machining techniques. However, it can be easily machined by executing spark EDM parameters to induce the correct optimum result. These composites find their application in high-temperature environments, viz. fuel turbo pump rotors, inlet nozzles, combustion chambers, injectors, nozzle throats, and nozzle extensions. The sparking parameters, namely current (I), pulse on time (Ton), pulse off time (Toff), spark gap (SG), and dielectric pressure (DP), were investigated by L18 orthogonal array. The optimal process parameters were determined by the grey relational grade (GRG) obtained through the grey relational analysis (GRA) for multiple performance characteristics, viz. material removal rate (MRR), electrode wear rate (EWR), circularity (CIR), cylindricity (CYL), and perpendicularity (PER). The significant process parameters were obtained by analysis of variance (ANOVA) based on GRG, which showed current, pulse on time, and DP. The results were finally established using a confirmatory experiment, which showed the spark eroding process could effectively be improved.  相似文献   

5.
The current work presents a detailed exploration on real-time wire electric discharge machining (WEDM) experiments and grey relational analysis (GRA)–based multi-criteria optimization of material and machining characteristics for lowered surface roughness (Ra) and improvised material removal rate (MRR) of the newly developed magnesium/boron nitride/cathode ray tube (Mg/BN/CRT) hybrid metal matrix composites (MMCs). The composites were fabricated through powder metallurgy (PM) route by reinforcing silica-rich E-waste CRT panel glass powder crushed for different particle sizes (10, 30, and 50?µm) at various weight percentages (5%, 10%, and 15%) and with 2% boron nitride (BN). Taguchi-based orthogonal array procedure was utilized to formulate the experimental plan for WEDM considering reinforcement level and size, pulse on time (Pon), pulse off time (Poff), and wire feed (Wf) as the input process parameters. ANOVA results reveal that Pon and wt% of reinforcement has more effect on Ra and MRR than any other considered parameters. The developed mathematical model for Ra and MRR predicted values similar to that of experimental results. Multi-criteria optimization was done through GRA technique and the so recommended optimum parameter set furnishes higher MRR (22.34?mm3/min) and reduced Ra (2.87?µm).  相似文献   

6.
In recent years, reverse electric discharge machining (R-EDM) has been evolved as a method for the fabrication of arrayed structures for surface texturing which find applications in fabrication of fins and component assembly. In this study, the feasibility of R-EDM process in the fabrication of arrayed features of ?3?mm and height 2?mm on mild steel has been investigated utilizing response surface methodology (RSM)-based experimentation. Influence of control variables such as peak current (Ip), pulse-on time (Ton), and flushing pressure (Fp) on some of the vital geometric characteristics like taper and cylindricity error along with material removal rate (MRR), surface roughness (SR), microhardness, and surface morphology of pillared structure has been investigated. Analysis of variance (ANOVA) results show that Ip has a significant influence followed by Ton on MRR. Ip has a significant contribution toward SR, taper, and cylindricity error. High microhardness was found in heat-affected zone (HAZ). The optimal combination of parameter obtained using principal component analysis (PCA)-based grey relational analysis (GRA) is determined to be Ip?=?10 A, Ton?=?100 μs, and Fp?=?0.3?kg/cm2, which was further ascertained using confirmatory test.  相似文献   

7.
Abstract

Powder mixed electric discharge machining (PMEDM) is a further advancement of conventional EDM process in which electrically conductive powder is suspended in the dielectric fluid to enhance the material removal rate (MRR) along with the surface quality. Cryotreatment is introduced in this process for improving the cutting tool properties as well as tool life. In this investigation, EDM is performed for the machining of AISI 304 stainless steel using cryotreated double tempered tungsten carbide electrode when SiC powder is suspended in the kerosene dielectric. The influence of process parameters viz. pulse on time, peak current, duty cycle, gap voltage and powder concentration on tool wear rate (TWR), surface roughness (Ra), and MRR has been studied. Metallographic analysis was carried out for the machined surfaces. By the addition of powder concentration and cryotreated double tempered electrode, significant improvement in the machining efficiency has been found out. When cryotreated electrode used MRR, TWR and Ra decreased by 12%, 24% and 13.3%, respectively and when SiC powder used MRR increased by 23.2%, TWR and Ra decreased by about 25% and 14.2%, respectively.  相似文献   

8.
Productivity and surface quality would significantly affect the performance of the micro electrical discharge machining process (µEDM). Thus, the machining performance would be enhanced by improving the material removal rate (MRR) and surface quality. In this investigation, cryogenic LN2 cooling was introduced to the conventional µEDM setup for developing an innovative process of cryogenically cooled µEDM process (CµEDM). The favorable outcomes of this process were estimated by selecting discharge current (Ip) and pulse on duration (Ton) for determining the effects of the machining performance including MRR and surface integrity. Surface quality was also analyzed by microstructural analysis and a scanning electron microscope (SEM) for evaluating the effects of the cryogenically cooled µEDM process. The experimental result shows 54–62% improvement in MRR and 22–36% improvement in average roughness values. Hence, it is suggested that cryogenically cooled µEDM facilitates improvement in productivity and surface quality.  相似文献   

9.
In this study, investigation has been conducted in the focus of obtaining better surface finish in the electro discharge machining (EDM) of AZ91/5B4Cp magnesium composites using distinctive sort of anode viz. copper, tungsten–copper, brass, aluminum and 20Gr/AA6061 (GRAL-20) composites. The process parameters, pulse on time and current were performed to research the machining qualities through material removal rate (MRR) and tool wear rate (TWR). The machined composites were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The formation of black spots was observed on machining with copper–tungsten and these black spots were not found when GRAL-20 was used as electrode. Machined with GRAL-20 electrode leads to the increase in spark gap, hence adequate flushing occurs; it eliminates re-melted layers on machined surface results in better surface roughness value. The results revealed that GRAL-20 electrodes posses better MRR followed by copper electrode whereas tungsten–copper exhibits better TWR followed by GRAL-20 electrode.  相似文献   

10.
The size minimization of titanium carbide (TiC) particles was done by high-energy mechanical milling. Later Al and TiC powders were mixed to frame cylindrical preforms with 95% density using a die set. The cylindrical preform was sintered in a muffle furnace (575°C) and subsequently cooled. Characterization was done using scanning electron microscope (SEM), field emission scanning electron microscope, and energy-dispersive spectrum. An electrical discharge machining (EDM) and L9 orthogonal array was used to perform the experiments. The present investigation was carried out to optimize parameters such as current, pulse-on time, and gap voltage on metal removal rate (MRR) and tool wear rate (TWR) during EDM of as-sintered Al–5% reinforced with ≤200 nm and 2 µm TiC particle reinforcement. The rationality of the experimental plan and the effect of electrode wear ratio based on TiC particle addition were analyzed using analysis of variance (ANOVA) with consideration to MRR and TWR. The recast layer evolution during EDM process was assessed by SEM analysis.  相似文献   

11.
Ti-6Al-4V, an advanced engineering material is difficult-to-machine using conventional machining process due to its high strength. It has properties like low weight ratio, outstanding corrosion resistance along with high level of reliable performance in micro components. Micro-electro-discharge machining (Micro-EDM), a popular nontraditional machining process has been identified as the most appropriate machining process for such material. In this paper, the effect of various conducting powders such as copper, nickel and cobalt with different concentrations are mixed with deionized water dielectric, on various responses such as material removal rate (MRR), tool wear rate (TWR), overcut (OC) and taper has been presented. Also, principal component analysis (PCA) has been applied to select the optimal parametric combination of micro-EDM process to achieve optimal values of MRR, TWR, OC and taper during micro-through hole machining. The optimal process parametric setting obtained from the proposed approach is peak current (Ip) of 1.5 A and cobalt (Co) powder concentration of 4 g/L so as to obtain the desired responses. It is also observed from the SEM image that the machined profile and surface topography obtained through the multi-objective optimal parametric combination based on PCA is quite satisfactory and can be applied to achieve geometrically more accurate micro-through holes on Ti-6Al-4V.  相似文献   

12.
Electrical discharge machining (EDM) is one of the most accepted machining processes in the precision manufacturing industry. In EDM process, finding an alternative tool material is the demand in modern manufacturing industry. Therefore, an attempt had been made to fabricate copper–titanium diboride powder metallurgy electrode to test in EDM on monel 400? material. The experiments are planned using center composite second-order rotatable design and the model is developed by response surface methodology. The machining characteristics have analyzed using the developed model. In this study, four input parameters such as titanium diboride percentage, pulse current, pulse on time, and flushing pressure are selected to evaluate the material removal rate (MRR) and tool wear rate (TWR). The adequacy of the developed regression model has tested through analysis of variance test. The desirability-based multiobjective optimization is used to find the optimal process parameter which has given maximum MRR and minimum TWR. The optimum process parameters obtained were titanium diboride of 16%, pulse current of 6 A, flushing pressure of 1 Mpa, and pulse on time of 35?µs. The validity of the response surface model is further verified by conducting confirmation experiments.  相似文献   

13.
Near-dry electric discharge machining (EDM) is an eco-friendly process. It does not produce toxic fumes and consequent health hazards. The near-dry EDM generally utilizes a mixture of two phase (liquid and air) dielectric for machining. This investigation reports the influence of four processing parameters, viz. current, flushing pressure, duty factor, and lift on three responses. The responses measured were material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The work material chosen was high speed steel (HSS). Mathematical models have been proposed herein for evaluation of the effect of processing parameters in near-dry EDM. These models were developed using response surface methodology (RSM). The experimental results reveal that the process parameters taken into consideration were significant for MRR. The TWR was negligible in near-dry EDM. This process gives a finer surface finish with thinner recast layer even at higher discharge energies as compared to conventional EDM.  相似文献   

14.
In general, kerosene and commercial grade EDM oils are conventional dielectric fluids in electrical discharge machining (EDM), despite their poor performance measures being major drawbacks. The aim of this study was to develop a dielectric fluid offering good performance measures in the EDM process, by determining the appropriate proportion of kerosene–servotherm and analyzing its performance with and without the additive concentration in EDM of monel 400?. Sixteen samples of kerosene–servotherm of varying proportions were used in this study. The optimum proportion of kerosene–servotherm was found to be 75:25, which resulted in the highest material removal rate (MRR) as compared with tool wear rate (TWR), and surface finish was found to be poorer than when using kerosene alone. In addition, 1 l of kerosene–servotherm concentrated with 6 g of graphite powder (one micron) exhibited substantial improvement in MRR, surface finish, and TWR compared with conventional dielectric fluids. Therefore kerosene–servotherm (75:25) concentrated with 6 g/l of graphite powder can be accepted as a potential dielectric fluid offering high MRR along with enhanced surface finish in EDM.  相似文献   

15.
High‐performance unipolar n‐type polymer semiconductors are critical for advancing the field of organic electronics, which relies on the design and synthesis of new electron‐deficient building blocks with good solubilizing capability, favorable geometry, and optimized electrical properties. Herein, two novel imide‐functionalized thiazoles, 5,5′‐bithiazole‐4,4′‐dicarboxyimide (BTzI) and 2,2′‐bithiazolothienyl‐4,4′,10,10′‐tetracarboxydiimide (DTzTI), are successfully synthesized. Single crystal analysis and physicochemical study reveal that DTzTI is an excellent building block for constructing all‐acceptor homopolymers, and the resulting polymer poly(2,2′‐bithiazolothienyl‐4,4′,10,10′‐tetracarboxydiimide) (PDTzTI) exhibits unipolar n‐type transport with a remarkable electron mobility (μe) of 1.61 cm2 V?1 s?1, low off‐currents (Ioff) of 10?10?10?11 A, and substantial current on/off ratios (Ion/Ioff) of 107?108 in organic thin‐film transistors. The all‐acceptor homopolymer shows distinctive advantages over prevailing n‐type donor?acceptor copolymers, which suffer from ambipolar transport with high Ioffs > 10?8 A and small Ion/Ioffs < 105. The results demonstrate that the all‐acceptor approach is superior to the donor?acceptor one, which results in unipolar electron transport with more ideal transistor performance characteristics.  相似文献   

16.
Electrical discharge machining (EDM) process is popular for machining conductive and difficult-to-cut materials, but low material removal rate (MRR) and poor surface quality are major limitations of the process. These limitations can be overcome by adding the suitable powder in the dielectric. The powder particles influence electric field intensity during the EDM process which in turn improve its performance. The size (micro to nano) and properties of the mixed powder also influence the machining efficiency. In this regard, the objective of the present work is to study the performance of EDM process for machining Inconel 825 alloy by mixing Al2O3 nanopowder in deionized water. The experimental investigation revealed that maximum MRR of 47?mg/min and minimum SR of 1.487?µm, which are 44 and 51% higher in comparison to conventional EDM process, respectively, can be achieved by setting optimal combinations of process parameters. To analyze these observed process behavior, pulse-train data of the spark gap were acquired. The discharge waveform identifies the less arcing phenomenon in the modified EDM process compared to conventional EDM. Further, surface-topography of the machined surface was critically examined by capturing field emission scanning electron microscopy and atomic force microscopy images.  相似文献   

17.
Electric discharge machining (EDM) is an acclaimed non-conventional machining process that is used for machining of hard or geometrically complex and electrically conductive materials which are extremely difficult to machine by conventional methods. One of the foremost demerits of this process is its very low material removal rate (MRR). For this, researchers have proposed some modifications like; providing rotational motion to the tool or workpiece, mixing of conducting fine powders (such as SiC, Cr, Al, graphite etc.) in the dielectric, providing vibrations to either the tool or the workpiece etc.

The present research examines how the MRR and tool wear rates (TWR) vary with the variation in the tool rotation speed and their effects on the surface integrity of the workpiece. The results obtained clearly indicate that the tool rotation significantly improves the average MRR up to 49%. Moreover, the average surface finish also gets improved by around 9–10% while using the rotational tool EDM. Due to the tool rotation, the recast layer thickness is less for the rotary EDM as compared with the stationary tool EDM process. Furthermore, the micro-cracking on the recast surface of the workpiece is also less for the rotary tool EDM as compared with the stationary tool EDM.  相似文献   


18.
The present work investigates the method of depositing a ceramic coating on the surface of aluminum by means of electrical discharge coating (EDC) in electrical discharge machining (EDM). The present study makes use of powder metallurgy (P/M) green compacts made of titanium, boron carbide, and aluminum (Ti + B4C + Al) powder as the EDM tool for surface modification of aluminum workpieces. EDM process was carried out with different tool parameters like composition of the electrode material, compaction pressure of the green compacts, and different settings of the process variables like peak current and pulse duration setting. Responses observed were material deposition rate (MDR), tool wear rate (TWR), and average layer thickness (LT). Experiments were designed and carried out using Taguchi L18 orthogonal array. The most influential parameter for responses MDR, TWR, and LT was found to be peak current (Ip) with a percentage contribution of 60.72%, 59.52%, and 42.09%, respectively. In addition, various other characterization techniques such as optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectrum (EDX) analysis were performed in order to judge different attributes of the deposited coating.  相似文献   

19.
The performance of cryogenically assisted electric discharge machining (CEDM) process has been evaluated in the presented research paper. The machining of cryogenically treated (CT) and cryogenically untreated (CUT) AISI D2 tool steel work specimens using cryogenically cooled (CC), CT, and CUT copper electrodes have been performed. The effects of various parameters, namely, workpiece condition, tool condition, nozzle flushing, peak current, duty cycle, pulse duration, and gap voltage, have been studied on the performance indicators, viz. the material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The best parametric combinations have been suggested to obtain the desired quality characteristics. The interaction effects among various parameters have also been presented. An increase of approximately 18% in MRR and a reduction of 26% and 11% in TWR and SR, respectively, were observed, during the machining through CEDM in contrast to EDM. The confirmatory experiments suggested that experimental values were in permissible agreement with the predicted values for all the performance measures. Finally, the comparison of the CEDM with that of EDM process, in the light of SEM graphs, has been presented.  相似文献   

20.
The present study reports the outcome of experiments conducted to investigate the effect of parameters on improvement in the material removal rate (MRR), reduction in the tool wear rate (TWR), and overcut size for commonly used die steels. To overcome some of the shortcomings of electric discharge machining (EDM), an approach of powder mixing in dielectric fluids is adopted to investigate the influence of process parameters. The addition of powders in dielectric improves MRR and lowers TWR significantly. Powder concentration, current, and pulse-on time are three significant factors affecting MRR, TWR, and overcut size. An increase in powder concentration improves the process performance, but is limited by the possibility of arcing at higher concentration. Use of the powder resulted in increased effective spark length causing larger overcut. The problem is acute in trials conducted at high pulse-on duration with high powder concentration that leads to a ragged surface at cut edges. Furthermore, electrode tools with smaller tip included angle resulted in larger profile deviation at the machined surface as compared to trials conducted using tools with higher included angle. Surface morphological changes, grain size, microstrain, and material migration were investigated using SEM, XRD, and EDS analysis and a significant improvement in properties of the machined surface was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号