首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超精密切削单晶硅的刀具磨损机理   总被引:2,自引:0,他引:2  
为了研究超精密切削单晶硅过程中金刚石刀具后刀面发生急剧磨损的机理,对单晶硅(111)晶面进行了超精密切削实验,并采用X射线光电子能谱分析仪对单晶硅已切削表面进行化学成分分析.实验结果表明:切削区域的高温高压导致金刚石刀具发生碳原子扩散磨损;切削过程中有碳化硅和类金刚石两种超硬微颗粒形成,而随着切削路程长度的逐渐增加,超硬微颗粒并不随之消失;碳化硅和类金刚石超硬微颗粒在金刚石刀具后刀面刻画和耕犁,从而产生沟槽磨损,直接导致金刚石刀具产生急剧磨损.  相似文献   

2.
Vibration-Assisted Precision Machining of Steel with PCD Tools   总被引:1,自引:0,他引:1  
This article presents experimental results of precision machining of steel alloys with polycrystalline diamond tools. Ultrasonic vibration-assisted cutting was tried out for expanding the application of diamond tools for high-precision and high-quality machining of ferrous materials. The experimental results show that compared with conventional turning, the cutting performance, in terms of cutting force, surface finish, and tool life, was improved by applying ultrasonic vibration to the cutting tool. The cutting forces and tool wear measured in vibration cutting are much lower than those in conventional cutting. The tool wear mechanism was discussed on the basis of the observation of wear zone.  相似文献   

3.
Inconel 718, a nickel-based superalloy, exhibits desirable properties over a wide temperature range, and it is widely used in industry. However, Inconel 718 is typically difficult to cut because of its strong work hardening, high temperature tensile strength, and shear strength. To improve the machinability of Inconel 718, this study proposes ultrasonic turning by applying elliptical vibration to the base plane. The principle and features of the ultrasonic elliptical vibration are discussed in detail. Experiments were conducted on a commercial ultrasonic cutting unit installed onto a commercial numerical control (NC) lathe; the cutting forces were found to be lower in the new method than in conventional turning (CT). Microchip particles were observed on both chip and work surface in CT but were almost absent on the surfaces prepared by ultrasonic elliptical vibration assisted turning (UEVT). Furthermore, the cutting tool used in CT developed built-up edge (BUE), and its flank wear became heavier; in contrast, negligible BUE and less flank wear were found on the cutting tool used in UEVT. The theoretical surface roughness of UEVT was calculated and it agreed much well with the measured surface roughness.  相似文献   

4.
采用化学气相沉积(chemicalvapordeposition,CVD)厚膜金刚石刀具进行模具钢超声振动切削实验.首先阐述刀具的材质特点,观测其刀尖微观形貌和切削刃截面轮廓.然后搭建了适应精密/超精密加工需求的超声振动切削实验装置,其中激振机构可稳定实现频率42.0kHz、振幅峰峰值8~9μm的振动输出.通过切削无氧铜实验证明该超声振动切削装置工作有效、稳定后,选用AISI420模具钢进行切削实验,研究切削工艺条件及切削用量对加工质量的影响,得到适用于CVD厚膜金刚石刀具的切削用量选取范围,对比研究发现超声振动切削在提升加工表面质量、减少金刚石刀具磨损方面均优于常规切削.本研究可使切削模具钢时的金刚石刀具磨损VBmax由500~600μm减少至40μm,模具铜表面粗糙度Ra由0.93μm改善至0.09μm.本研究为金刚石刀具超声振动切削模具钢的实用化积累工艺经验,并探索提供可行的技术实现途径.  相似文献   

5.
G. Castro  F.J. Oliveira  J. Sacramento 《Vacuum》2008,82(12):1407-1410
Silicon-aluminium alloys (Al-Si), with Si contents up to 20%, are important materials in automotive and aeronautical industries due to their low density and high wear resistance. The turning of these alloys has been done mainly by superhard tools like polycrystalline diamond (PCD). CVD diamond either as thin coatings on silicon nitride ceramics or as thick brazed tips on hard metals is alternative material. In this work, CVD diamond thin films were grown on Si3N4 ceramic substrates and thick CVD diamond plates were brazed onto WC-Co tools. These different inserts were used in dry turning of silicon-aluminium alloys with 12 wt% and 18 wt% Si. Both directly diamond coated and brazed tools are able to machine the Al-12 wt% Si alloy with negligible wear. In turning of Al-18 wt% Si, sharp edged tools yield lower cutting forces than the chamfered ones, with the occurrence of tool failure at about 500 and 100 m, respectively. CVD brazed tools proved to be able for dry turning this hypereutectic alloy, keeping the cutting forces below 60 N. Minimal wear was observed after 1500 m of cutting length, mainly caused by diamond chipping at the flank face.  相似文献   

6.
The in-situ TiB2 particle reinforced aluminum matrix composites are materials that are difficult to machine, owing to hard ceramic particles in the matrix. In the milling process, the polycrystalline diamond (PCD) tools are used for machining these materials instead of carbide cutting tools, which significantly increase the machining cost. In this study, ultrasonic vibration method was applied for milling in-situ TiB2/7050Al metal matrix composites using a TiAlN coated carbide end milling tool. To completely understand the tool wear mechanism in ultrasonic-vibration assisted milling (UAM), the relative motion of the cutting tool and interaction of workpiecetool-chip contact interface was analyzed in detail. Additionally, a comparative experimental study with and without ultrasonic vibration was carried out to investigate the influences of ultrasonic vibration and cutting parameters on the cutting force, tool life and tool wear mechanism. The results show that the motion of the cutting tool relative to the chip changes periodically in the helical direction and the separation of tool and chip occurs in the transverse direction in one vibration period, in ultrasonic vibration assisted cutting. Large instantaneous acceleration can be obtained in axial ultrasonic vibration milling. The cutting force in axial direction is significantly reduced by 42%-57%, 40%-57% and 44%-54%, at different cutting speeds, feed rates and cutting depths, respectively, compared with that in conventional milling. Additionally, the tool life is prolonged approximately 2-5 times when the ultrasonic vibration method is applied. The tool wear pattern microcracks are only found in UAM. These might be of great importance for future research in order to understand the cutting mechanisms in UAM of in-situ TiB2/7050Al metal matrix composites.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00294-2  相似文献   

7.
Diamond turning technology has gained great importance in high-precision optical component fabrication. The quality of machined optical surfaces is mainly affected by the machine tool's accuracy, cutting tool's quality, and dynamic machining effects. This study investigated the effects of cutting tool conditions and tool set-up error on the surface distortion. Controlled cutting tests were performed on a two-axis diamond turning machine. Spherical mirrors with preset tool offset values and tool height values were turned. The relationship among machined form accuracy, tool offset, and tool height was investigated based on experimental and analytical results. The influence of tool wear on machined surface quality was studied. Factors governing uneven wear along the cutting edge in contour machining were analyzed. A spherical surface with a form accuracy better than λ/10 was produced. Methods for minimizing the effect of tool wear are also discussed.  相似文献   

8.
This work presents a series of experimental investigations and corresponding theoretical analyses to research on the effect of cryogenic minimum quantity lubrication (MQL) on machinability of diamond tool in ultraprecision turning of typical die steel. The tool wear and machined surface quality were determined as experimental indexes, which were measured using the scanning electron microscope and surface profiler, respectively. Besides, the maximum temperatures of diamond tool surfaces acquired by infrared thermal imager were used to indirectly evaluate the cutting process. The experimental results revealed that cryogenic MQL had obvious advantages in improving diamond tool durability and machined surface quality by comparison with flood cooling, cryogenic gas cooling, and MQL, and its essential function mechanisms were thoroughly understood. On the basis of this, carbon nanofluid was found to achieve optimal tool life in diamond turning compared with polyethylene glycol, castor oil, synthetic ester, and emulsified liquid. Ultimately, the combined machining method of ultrasonic vibration-assisted turning and cryogenic minimal quantity lubrication was proposed in this work. The results showed that this technique could observably improve the machinability of diamond tool and also provide a new direction for exploring a suitable processing method for ultraprecision machining of ferrous materials.  相似文献   

9.
Abstract

In this paper, diffusion wear during milling of titanium alloys is reported. In high speed milling, tool wear is mainly caused by diffusion. The wear pattern is characterised by the combined extension of crater wear on the rake face and glacier wear on the flank. Evidence of diffusion of cobalt and carbon at the interface between the milling cutter and the workpiece has been obtained. It was demonstrated for the first time that, as diffusion wear occurred, a carbon rich layer was formed at the tool/workpiece interface while the tool material below the flank wearland was depleted in carbon. Wear occurred as a result of embrittlement and weakening of the tool surface resulting from the diffusion process.

MST/674  相似文献   

10.
This article presents machinability of 17-4PH stainless steel using a hybrid technique composed of plasma-enhanced turning and cryogenic turning. First of all, using some primary experimental tests and nonlinear regression, a mathematical model was developed for surface temperature of uncut chip as a function of plasma current and cutting parameters. Then, the influence of cutting speed (Vc), feed (f), and surface temperature of uncut chip (Tsm) was studied on surface roughness (Ra), cutting force (Fz), and tool flank wear (VB). The results show that hybrid turning (HYT) is able to lower the main cutting force and tool flank wear in comparison with conventional turning. In addition, surface roughness was improved except for high level of surface temperature of uncut chip. However, hardness measurement of machined workpiece showed that HYT does not change the hardness of machined surface.  相似文献   

11.
The present research work has been undertaken with a view to investigate the influence of CVD multilayer coated (TiN/TiCN/Al2O3/ZrCN) and cutting speed on various machining characteristics such as chip morphology, tool wear, cutting temperature, and machined surface roughness during dry turning of 17-4 PH stainless steel. In order to understand the effectiveness of CVD multilayer coated tool a comparison has been carried out with that of uncoated carbide insert. The surface roughness and cutting temperature obtained during machining with chemical vapor deposition (CVD) multilayer coated tool was higher than that of uncoated carbide insert at all cutting velocity. However, the results clearly indicated that CVD multilayer coated tool played a significant role in restricting various modes of tool failure and reducing chip deformation compared to its uncoated counterpart. Adhesion and abrasion were found to be dominating wear mechanism with flank wear, plastic deformation, and catastrophic failure being major tool wear modes.  相似文献   

12.
This paper examines the flank and crater wear characteristics of coated carbide tool inserts during dry turning of steel workpieces. A brief review of tool wear mechanisms is presented together with new evidence showing that wear of the TiC layer on both flank and rake faces is dominated by discrete plastic deformation, which causes the coating to be worn through to the underlying carbide substrate when machining at high cutting speeds and feed rates. Wear also occurs as a result of abrasion, as well as cracking and attrition, with the latter leading to the wearing through the coating on the rake face under low speed conditions. When moderate speeds and feeds are used, the coating remains intact throughout the duration of testing. Wear mechanism maps linking the observed wear mechanisms to machining conditions are presented for the first time. These maps demonstrate clearly that transitions from one dominant wear mechanism to another may be related to variations in measured tool wear rates. Comparisons of the present wear maps with similar maps for uncoated carbide tools show that TiC coatings dramatically expand the range of machining conditions under which acceptable rates of tool wear might be experienced. However, the extent of improvement brought about by the coatings depends strongly on the cutting conditions, with the greatest benefits being seen at higher cutting speeds and feed rates. Among these methods, tool condition monitoring using Acoustic Techniques (AET) is an emerging one. Hence, the present work was carried out to study the stability, applicability and relative sensitivity of AET in tool condition monitoring in turning.  相似文献   

13.
Abstract

In the present investigation, machinability issues of zinc–aluminium (ZA43) alloy reinforced with silicon carbide particles (SiC) were evaluated. The fabrication of composite was done through liquid metallurgy technique. Metal matrix composite (MMC) was subjected to turning using conventional lathe with three grades of cutting tools, namely, uncoated carbide tool, coated carbide tool and ceramic tool. Surface roughness and tool wear were measured during the machining process. Results reveal that roughness increases with increase in the reinforcement concentration and particle size. Feed has direct influence on roughness, i.e. surface deteriorates with higher feeds. Depth of cut has very minimum effect on the surface roughness, while inverse effect of cutting speed on the roughness was observed (i.e. increase in the cutting speed leads to better finish on the specimen). Tool wear was studied during the investigation, and it was noticed that MMC with higher reinforcement concentration and particle size cause severe wear on the flank of the cutting tool. Increase in the cutting speed, feed and depth of cut also increases the flank wear on the tool. Out of all the three grades of tools, coated carbide tool outperformed uncoated carbide and ceramic tools.  相似文献   

14.
Two advanced machining methods such as thermally enhanced machining and ultrasonic-assisted machining are recently considered in many studies. In this article, a new hybrid milling process is presented by gathering the characteristics of these two methods. In order to determine the axial depth of cut and engagement in the process, three-dimensional thermal finite-element analysis is applied to determine the dimensions of softened materials. Finite-element modal analysis is used to determine the dimensions and clamping state of the workpiece while cutting area has the highest vibration amplitude. Full factorial experimental design is applied to investigate the effect of hybrid machining parameters on the surface roughness and tool wear. Tool flank wear was investigated under the condition of constant cutting speed during different period of times. Hybrid milling process with an amplitude of 6 µm and a temperature of 900°C creates a surface with 42% lower roughness in comparison to conventional milling in feed 0.08 mm/tooth. In a study of tool flank wear, the results show that application of TEUAM decreases flank wear at least 16% in comparison to all other processes.  相似文献   

15.
SiCp/Al composites have been widely used in many fields such as aerospace, automobile, advanced weapon system, etc. But this kind of material, especially with high volume fraction, is difficult to machine due to the reinforced particles existing in matrix, which has limited its further application. Rotary ultrasonic machining (RUM) has many excellent features and it has never been used to machine SiCp/Al composites. In order to improve the machinability and application of SiCp/Al composites, the rotary ultrasonic face grinding experiments of SiCp/Al composites reinforced with 45% volume SiC particles were carried out to investigate cutting force, surface quality, tool wear, and abrasive chip shapes. The experimental results indicate that ultrasonic vibration could reduce cutting force, surface roughness, surface defects, and increase plastic removal ratio. The cutting force could be lowered by an average of 13.86% and the surface roughness could be lowered by an average of 11.53%. The examined results of tool wear patterns suggest that tool wear is mainly caused by grain breakage and grain fall-off. Grinding wheel blockage and grinding burn were not observed in machining process.  相似文献   

16.
The paper addresses the influence of cutting conditions on acoustic emission signals in fine turning of aluminum alloys. Each AE signal was split into two sections: the first one is associated mostly with the chip formation and the second one with the tool–workpiece friction. The tool materials were single crystals of natural and synthetic diamond as well as hardmetal WC–6Co. The experimental data demonstrate that in diamond turning the main signal is emitted during the chip formation, while in the case of hardmetal turning the portion of the signal emitted due to the tool flank friction is often larger and depends on the cutting conditions.  相似文献   

17.
The paper deals with cutting speed in range 3 m?min‐1 up to 2200 m?min‐1 and its complex impact mainly on chip macroscopic shape, chip microstructure, chip compression, tool wear, tool life and machined surface quality and interprets and compares the effects regarding low, conventional, high and very high speed machining based on the dry turning of carbon steel by sintered carbide coated by titanium nitride and ceramic cutting inserts. The deformation zone response for different cutting speeds at the tool‐chip‐workpiece interfaces and their effect on tool wear were studied. The extensive (so called complete) experiments within wide range of values and large number of measurements were carried out. The formation of secondary chip occurring in high speed turning is reported. Moreover, the paper analyses the total machining time involving tool replacement time in terms of high speed machining regarding the obtained experimental results.  相似文献   

18.
Austenitic stainless steels are hard materials to machine, due to their high strength, high ductility and low thermal conductivity. The last characteristic results in heat concentration at the tool cutting edge. This paper aims to optimize turning parameters of AISI 304 stainless steel. Turning tests have been performed in three different feed rates (0.2, 0.3, 0.4 mm/rev) at the cutting speeds of 100, 125, 150, 175 and 200 m/min with and without cutting fluid. A design of experiments (DOE) and an analysis of variance (ANOVA) have been made to determine the effects of each parameter on the tool wear and the surface roughness. It is being inferred that cutting speed has the main influence on the flank wear and as it increases to 175 m/min, the flank wear decreases. The feed rate has the most important influence on the surface roughness and as it decreases, the surface roughness also decreases. Also, the application of cutting fluid results in longer tool life and better surface finish.  相似文献   

19.
The objective of this research was to study the machining of superalloy VAT32® using alumina-based ceramic tool without cutting fluid, applying different machining parameters to evaluate the surface finish of parts, vibration and main wear of tools. For this, a turning process with a linear trajectory of 30 mm was performed, in which were collected data vibration and surface roughness of the stretch, as well as wear and damage in the tools. The turning tests were performed utilizing cutting speeds of 270, 280 and 300 m/min, a feed of 0.10, 0.18 and 0.25 m/rev and a cutting depth of 0.50 mm. With results, it was identified that the feed influenced significantly both the vibration and the system, since the cutting speed influenced only the vibration. Being that the best results happened for the smaller feed and greater cutting speed. It concludes that the machining of superalloy VAT32® with ceramic tool introduced herself promising.  相似文献   

20.
针对铝基碳化硅切削加工中刀具易磨损、寿命低、切削难度大和加工成本高等问题,选用不同材料的硬质合金铣刀及金刚石铣刀进行切削加工实验,并利用扫描电镜和工具显微镜对高体积分数铝基碳化硅铣削时刀具磨损形态进行了分析研究.研究表明:硬质合金刀具前刀面和刃口磨损主要形式为粘结磨损和微崩刃,后刀面磨损主要为刻划磨损,而金刚石铣刀加工时刀具磨损很小;YG6X铣刀材料微观组织致密,抗磨损能力较强,宜粗加工时选用;金刚石刀体的硬度远大于SiC颗粒,且金刚石与工件的摩擦系数小,金刚石铣刀寿命远大于硬质合金铣刀,宜精加工时选用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号