首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
溶剂热法Fe3O4纳米颗粒的制备及表征   总被引:2,自引:1,他引:1  
以乙醇及水的混和溶剂、单质Fe为原料在高温高压反应釜中制备了Fe3O4纳米颗粒。XRD及红外分析表明所获得产物为Fe3O4。高分辨透射电镜观察表明,Fe3O4具有长棒状形貌,长度为200~500nm,直径为20~30nm。所获得Fe3O4纳米颗粒具有良好的铁磁性能,其饱和磁化强度达到64.75emu/g。讨论了Fe3O4纳米颗粒的形成机制。  相似文献   

2.
采用高能球磨及热压烧结工艺制备了Mo-4%(质量分数,下同)La2O3纳米复合的阴极材料,其中La2O3的颗粒尺寸小于100 nm;作为比较,商业W-4%Th O2阴极材料中的Th O2颗粒尺寸为1~2μm。Mo-La2O3纳米阴极材料的平均真空起始电场强度为2.97×107V/m,比商业W-Th O2阴极材料低62.7%。纳米复合的Mo-La2O3阴极材料具有优异的电子发射性能,其电子发射点的分布面积和密度明显大于商业W-Th O2阴极材料。氧化物的颗粒尺寸对于阴极材料的电子发射性能以及真空电弧特性有显著的影响。随着La2O3颗粒尺寸的减小,Mo-La2O3阴极材料的电子发射性能提高。当La2O3的颗粒尺寸减小到小于100 nm时,Mo-La2O3阴极材料的电子发射面积和能力显著增加。纳米复合Mo-La2O3阴极材料电子发射性能的增强归因于在相界面上形成了高的内电场和空间电荷区。  相似文献   

3.
采用高能球磨及热压烧结工艺制备了Mo-4%(质量分数,下同)La2O3纳米复合的阴极材料,其中La2O3的颗粒尺寸小于100 nm;作为比较,商业W-4% ThO2阴极材料中的ThO2颗粒尺寸为1~2 μm。Mo-La2O3纳米阴极材料的平均真空起始电场强度为2.97×107 V/m,比商业W-ThO2阴极材料低62.7%。纳米复合的Mo-La2O3阴极材料具有优异的电子发射性能,其电子发射点的分布面积和密度明显大于商业W-ThO2阴极材料。氧化物的颗粒尺寸对于阴极材料的电子发射性能以及真空电弧特性有显著的影响。随着La2O3颗粒尺寸的减小,Mo-La2O3阴极材料的电子发射性能提高。当La2O3的颗粒尺寸减小到小于100 nm时,Mo-La2O3 阴极材料的电子发射面积和能力显著增加。纳米复合Mo-La2O3阴极材料电子发射性能的增强归因于在相界面上形成了高的内电场和空间电荷区。  相似文献   

4.
研究加入Ca元素对吹气法制备泡沫铝工艺中颗粒分散程度和泡沫稳定性的影响,考察加入质量分数为1%的Ca后A356铝合金熔体中陶瓷颗粒团聚尺寸、临界吹气深度、泡壁厚度和Al2O3颗粒在气泡界面处浸润角的变化。结果表明:加入Ca使熔体中颗粒团聚尺寸减小,令微小颗粒的分散变得容易,但使临界吹气深度增加,不利于泡沫的稳定;吹气法工艺中,Al2O3颗粒在气泡界面处的浸润角约为65°,小于理想值90°,加入Ca使颗粒的浸润性进一步远离理想值,因此,尽管加入Ca使颗粒团聚尺寸减小,但同时增大壁厚,泡沫的稳定性依然变差。  相似文献   

5.
目的 提高炭气凝胶材料电磁吸波性能。方法 以氢氧化钠或氨水为共沉淀剂制备不同尺寸的Fe3O4颗粒,并加入间苯二酚-甲醛溶液的预聚物中,充分搅拌后快速凝胶,经老化、超临界干燥、碳化等工艺制备Fe3O4/炭气凝胶复合材料。利用SEM、TEM、激光粒度分析仪、比表面及微孔分析仪、振动样品磁强计对Fe3O4及复合材料的微观结构和静磁性能进行表征,并对复合材料的吸波性能进行分析。结果 Fe3O4/炭气凝胶复合材料具有丰富的三维网络结构,Fe3O4颗粒在炭气凝胶中呈离散性分布。Fe3O4颗粒粒径越小,Fe3O4/CA的饱和磁化强度越大,75 nm-Fe3O4/CA的饱和磁化强度最大,达到29.26 emu.g–1;当Fe3O4粒径为75 nm时,复合材料在厚度为2.1 mm时的最小反射损耗值可达–52.43 dB;当Fe3O4粒径为120 nm时,复合材料在厚度为2.5 mm时的有效吸收带宽高达6.98 GHz。结论 Fe3O4纳米颗粒粒径对复合材料介电损耗能力和阻抗匹配有显著影响,进而影响复合材料的吸波性能。大粒径的Fe3O4颗粒会破坏炭气凝胶的三维导电网络结构,从而降低复合材料的介电损耗能力。小粒径的Fe3O4颗粒可有效改善复合材料的阻抗匹配性能。  相似文献   

6.
以Fe2O3粉、Si粉和Al粉为原料,采用反应机械合金化/退火法制备出了Al2O3/Fe3Si纳米复合粉体。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对复合粉体球磨以及退火过程中的固态反应过程、表面形貌进行表征。研究表明,Fe2O3-Si-Al混合粉体球磨5 h后发生反应生成Al2 O3、Fe5 Si3、Fe3 Si、FeSi,球磨20 h后生成Al2 O3/Fe3 Si,球磨20 h的粉体在900℃条件下退火1 h的组成物相未发生变化,复合粉体颗粒呈球形,其尺寸为5μm左右,分布均匀,组成相Al2O3和Fe3Si的晶粒尺寸分别为26.6 nm和28.3 nm。  相似文献   

7.
采用A356-(K2ZrF6+KBF4+Na2B4O7)作为熔体直接反应体系制备(ZrB2+Al2O3+Al3Zr)/A356复合材料。利用XRD、SEM和TEM等测试技术研究复合材料的相组成和微观组织。结果表明,复合材料增强相由ZrB2和Al2O3陶瓷相颗粒和Al3Zr金属间化合物相颗粒组成。ZrB2颗粒易团聚形成颗粒团簇并沿α(Al)合金晶界分布;ZrB2颗粒的微观形貌为六边形,尺寸在50nm左右。TEM研究发现,Al3Zr颗粒以小面形式生长,其长径比约为20;Al2O3颗粒形貌为长方体状和椭圆状,尺寸约为0.1μm。此外,基体与颗粒的相界面干净,无界面反应物生成。  相似文献   

8.
纳米In2O3的微乳液合成及酒敏性能   总被引:8,自引:0,他引:8  
采用微乳液法制备超细In2O3粉体,粉体粒径为8nm,在In2O3基体材料中掺杂Pd及金属氧化物,研制出实用性的热线型C2H5OH气敏元件,该元件功耗低(小丁300mW),选择性高,长期稳定性好。并考察了温度、湿度变化对气敏元件性能的影响,分析了元件的气敏机理。  相似文献   

9.
碳酸盐沉淀法制备Y2O3纳米粉及透明陶瓷   总被引:7,自引:0,他引:7  
以Y(NO3)3和NH4HCO3为原料,采用正向滴定法,得到了化学组成为Y2(CO3)3.2H2O的先驱沉淀物。结果发现:时效可使沉淀物的颗粒尺寸和形状发生明显变化,时效48 h后,先驱沉淀物形状由球形变为针状;先驱物经水洗乙醇清洗丙酮清洗可提高Y2O3粉体的活性;针状先驱物在1 100℃下煅烧4 h能得到团聚轻的Y2O3粉体,粉体平均粒径约为80 nm;所得粉体在1 700℃真空烧结4 h后,获得了透明Y2O3陶瓷。  相似文献   

10.
碳热还原法制备纳米碳化铬粉末及其特性表征   总被引:2,自引:0,他引:2  
以纳米Cr2O3和纳米碳黑为原料,采用碳热还原法制备纳米碳化铬(Cr3C2)粉末。采用XRD、SEM和TEM等测试手段对反应产物进行表征。结果表明:当碳含量为28%(质量分数)、反应温度为1 100℃及保温时间为1 h时,反应产物为单一的Cr3C2,平均晶粒尺寸为25.6 nm;反应产物分散较好且颗粒呈球形或类球形,无明显团聚现象,颗粒尺寸在30 nm左右;试样表面主要由Cr、C和O这3种元素组成,O 1s谱主要包括3个峰(Oa,Oh和Od),分别对应于O、OH和Cr2O3;C 1s谱主要包含4个峰(Cf,Cc,Cd和Ce),分别对应污染碳、碳化铬(Cr3C2)及其他类型的碳化铬Cr3C2 x(0≤x≤0.5)。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号