首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of fabric method on instability behavior of granular material   总被引:1,自引:0,他引:1  
It is well known that the specimen preparation method and the resulting sand fabric significantly affect sand behavior and sand liquefaction resistance. In many cases, the fabric and behavior of reconstituted sand samples do not represent those of in-situ deposits. Therefore, understanding the influence of specimen preparation and sand fabric on its behavior, particularly at the critical state, is important for relating the behavior of laboratory reconstituted specimens to in-situ soil response. In this study, the effect of sand fabric and specimen preparation method on the shearing behavior of sand is studied using triaxial shear tests. Dry funnel pluviation (DFP) and wet tamping (WT) are used to prepare the specimens. The results from instability lines and stress–strain curves indicate that the liquefaction resistance of specimens prepared with the DFP method is more than specimens reconstituted by the WT method.  相似文献   

2.
Plastic deformation in spherulitic polypropylene includes a component of dilatational strain. Residual volume changes have been measured as a function of uniaxial strain for tension, compression and cyclic tests. In compression, the volume changes were measured during the test while the specimen was under had and the stress maximum was found to be related to the onset of rapid dilation. The dilation for all modes of mechanical testing was found to be linearly dependent on the tensile component of the strain. Microstructural changes responsible for these observations were examined using transmission electron microscopy of permanganic etched interior surfaces of the deformed specimens. Microcrazes along interlamellar planes were found in all deformed specimens. Fatigue failure in symmetric tension/compression tests occurred by accumulation of crazes, predominantly on the tensile half cycles.  相似文献   

3.
《Composites Science and Technology》2007,67(11-12):2342-2349
Static compressive tests of composite egg-box panels, whose stacking sequences and number of plies were controlled, were carried out to investigate their deformation behaviour and energy absorption capacity. Silicon rubber moulds were first moulded from an aluminium egg-box panel template. These moulds were in turn used to fabricate composite specimens. Two fabric prepregs, carbon/epoxy plain weave fabric and glass/epoxy 4-harness satin weave were draped over the rubber mould with various stacking angles. The specimens were cured in an autoclave using vacuum bag degassing moulding and an appropriate cure cycle. The nominal stress–strain relations of the specimens were compared and multiply-interrupted compressive tests were used to identify fracture initiation and development. The energy absorption per unit mass of composite egg-box panels were compared with that of an aluminium egg-box panel. From the test results it was concluded that the compressive behaviour of the composite structure is affected by the local stacking sequence of the fabrics and by shear deformation during initial lay-up and draping. By considering the stress–stain behaviour, energy absorption and material cost, the optimal material and draping condition were proposed for a composite egg-box panel.  相似文献   

4.
Dynamic deformation and failure behavior of a tungsten heavy alloy (93W) under complex stress condition are studied using a split Hopkinson pressure bar (SHPB) apparatus. Cylindrical, step-cylindrical and truncated-conic specimens are used to generate different stress condition in an attempt to induce strain localization in the alloy. The microstructure of the specimens after tests is examined by optical microscopy and scanning electronic microscopy (SEM). It is found that in all the specimens, except the cylindrical ones, intense strain localization in the form of shear bands is initiated at stress concentration sites. In order to analyze the stress condition of different specimen geometry, finite element simulations are also presented. The Johnson-Cook model is employed to simulate the thermo-viscoplastic response of the material. It is found that dynamic deformation and failure modes are strongly dependent on the geometry of the specimens. The stress condition controlled by specimen geometry has significant influence on the tendency for shear band formation. The adiabatic shear band has general trends to initiate and propagate along the direction of maximum shear stress. It is suggested that further studies on the control of the stress condition to promote shear band formation be conducted in order to improve the penetration performance of the tungsten heavy alloy.  相似文献   

5.
The process of fracture in a low-carbon cast steel was studied for different states of stress. As a result of heat treatment, two different microstructures have been obtained: ferritic-pearlitic and bainitic. The triaxial states of stress were realised by tensile tests on specimens with various notch configurations and on smooth specimens subjected to different hydrostatic pressures.
During tensile tests carried out under triaxial stress states, the following quantities at fracture were determined: the effective strain, effective stress, stress state components, mean stress and stress triaxiality factor. Fractography of the specimens was carried out to observe the fracture mechanisms and relate them to the state of stress. The fracture mechanism depended on the state of stress and microstructure. With a decreasing stress triaxiality factor, the failure mechanism changed from ductile to shear. The fracture mechanism changed across the diameter of the sample and also depended on the microstructure. The small, smooth samples fractured at a higher stress than the larger samples. Ductile fracture in the ferritic-pearlitic microstructure was controlled by cracking of the matrix–precipitate boundary. Samples with the bainitic microstructure fractured by shear, and fracture depended mainly on the effective stress, although void growth (which is controlled by stress triaxiality) reduced the critical effective stress at positive values of mean stress.  相似文献   

6.
Four sets of individual-particle crushing tests were carried out on sandstone grains of different size with geometric similarity. The tensile strength was analyzed using Weibull statistics, and the size-hardening law was obtained. The experimental data also validated that the Weibull modulus is independent of the grain size. Considering both the shear and tensile fracture modes of the particle, the Mohr–Coulomb model with a tension cut-off was employed as the fracture criterion of a single particle. When the particle stresses satisfied the fracture criterion, three new fragments modeled by the ‘clump’ were generated to replace the broken particle. Nine spheres with four different sizes were released from the clump and allowed to continue crushing if the fragment stresses fulfilled the criterion again. Two polydisperse assemblies with different particle sizes but same initial fabrics were prepared. DEM simulations of triaxial shear tests with different grain sizes were carried out on the crushable granular material with varied confining pressures. The simulated stress–strain–dilation responses were in agreement with the experimental observations. The macro–micro responses of the two samples, including the stress–strain–dilation behavior, the particle crushing, and the normal contact force distribution, were discussed in detail. The cause of the size effect on the shear strength and deformation was thoroughly investigated through a variety of mechanism demonstrations and micromechanical analysis.  相似文献   

7.
三向应力状态下混凝土强度和变形特性研究   总被引:1,自引:0,他引:1  
对设计强度为10MPa的混凝土立方体试件进行三轴压缩试验,系统研究了等围压条件下混凝土的强 度和变形特性,围压分别为0,4,8,12,16MPa5个量级;同时研究了不等围压条件下混凝土强度变化特性, 试验表明,随着围压增加,混凝土的极限抗压强度有明显增强的趋势;随着小主应力的增加,中主应力的影响 有减弱的趋势;峰值应力处应变随围压增加幅度显著。得出了在不同恒定围压下混凝土的应力应变全过程曲线; 通过与当前文献资料的对比分析,指出了在混凝土结构计算中适用的强度及变形表达式,为工程实践提供了 依据。  相似文献   

8.
Physical experiments can characterize the elastic response of granular materials in terms of macroscopic state variables, namely volume (packing) fraction and stress, while the microstructure is not accessible and thus neglected. Here, by means of numerical simulations, we analyze dense, frictionless granular assemblies with the final goal to relate the elastic moduli to the fabric state, i.e., to microstructural averaged contact network features as contact number density and anisotropy. The particle samples are first isotropically compressed and then quasi-statically sheared under constant volume (undrained conditions). From various static, relaxed configurations at different shear strains, infinitesimal strain steps are applied to “measure” the effective elastic response; we quantify the strain needed so that no contact and structure rearrangements, i.e. plasticity, happen. Because of the anisotropy induced by shear, volumetric and deviatoric stresses and strains are cross-coupled via a single anisotropy modulus, which is proportional to the product of deviatoric fabric and bulk modulus (i.e., the isotropic fabric). Interestingly, the shear modulus of the material depends also on the actual deviatoric stress state, along with the contact configuration anisotropy. Finally, a constitutive model based on incremental evolution equations for stress and fabric is introduced. By using the previously measured dependence of the stiffness tensor (elastic moduli) on the microstructure, the theory is able to predict with good agreement the evolution of pressure, shear stress and deviatoric fabric (anisotropy) for an independent undrained cyclic shear test, including the response to reversal of strain.  相似文献   

9.
针对带有橡胶垫层的混凝土试件,通过直剪试验研究了带有橡胶垫层的混凝土接触摩擦特性。采用PPR内聚力模型表征接触面的接触摩擦特性,对试验结果进行了模拟分析。试验结果表明:在带有橡胶垫层的混凝土接触面剪切过程中,剪切应力与剪切位移的变化过程可分为弹性、弹塑性硬化和应变软化变形阶段。当轴向应力在1.5 MPa~13 MPa范围内时,残余强度与剪切强度比在55%~65%,当轴向应力为17 MPa和21 MPa时,残余强度与剪切强度比大约分别为70%、80%。橡胶垫层在混凝土之间起到良好的缓冲作用。在轴向应力较大时,接触面的应力变形会伴有明显的软化变形阶段。利用Archard非线性幂次准则描绘了剪切峰值应力与轴向应力的关系,准则中常数k和m分别为0.97和0.33。PPR内聚力模型计算表明剪切应力随剪切位移变化关系曲线与试验结果基本吻合,为研究盾构管片块体间的接触摩擦作用研究提供借鉴。  相似文献   

10.
In the present work, the effect of viscoelasticity on the yield behaviour of a polycarbonate, PC, was studied and the identification of a yield criterion which takes into account the effects of the mechanical history on the onset of plastic strain, was attempted. The attention was focused on the shear yielding plastic deformation process and different loading histories were performed under uniaxial compression: constant strain rate at different rates, stress relaxation at different applied strain levels, creep under different stress levels. Some tests were also carried out under shear loading, in which the hydrostatic stress component is equal to zero and its effect on the yield onset can be considered. For the definition of a yield criterion, different quantities, some already proposed in an analogous work on a styrene-acrylonitrile copolymer (SAN), were considered and determined at yield onset for each of the applied loading histories. The results obtained in this work show that the relative ratios of the viscoelastic strain over the overall strain and of viscoelastic energy over the deformation work are fairly constant irrespective of both loading history and stress state. The re-elaboration of the data previously obtained on SAN is consistent with these results. Discussing the experimental data, differences between the mechanical behaviour of the two glassy polymers were pointed out and a more difficult activation of the plastic deformation process of PC than SAN was generally observed.  相似文献   

11.
An investigation on loose cemented granular materials via DEM analyses   总被引:1,自引:0,他引:1  
This paper presents the results of a numerical study carried out by 2D discrete element method analyses on the mechanical behavior and strain localization of loose cemented granular materials. Bonds between particles were modeled in order to replicate the mechanical behavior observed in a series of laboratory tests performed on pairs of glued aluminum rods which can fail either in tension or shear (Jiang et al. in Mech Mater 55:1–15, 2012). This bond model was implemented in a DEM code and a series of biaxial compression tests employing lateral flexible boundaries were performed. The influence of bond strength and confinement levels on the mechanical behavior and on the onset of shear bands and their propagation within the specimens were investigated. Comparisons were also drawn with other bond models from the literature. A new dimensionless parameter incorporating the effects of both bond strength and confining pressure, called BS, was defined. The simulations show that shear strength and also dilation increase with the level of bond strength. It was found out that for increasing bond strength, shear bands become thinner and oriented along directions with a higher angle over the horizontal. It also emerged that the onset of localization coincided with the occurrence of bond breakages concentrated in some zones of the specimens. The occurrence of strain localization was associated with a concentration of bonds failing in tension.  相似文献   

12.
三向应力状态下混凝土动态强度和变形特性研究   总被引:7,自引:2,他引:5  
闫东明  林皋  徐平 《工程力学》2007,24(3):58-64
利用大连理工大学自行研制、改造的大型液压伺服静动三轴试验系统对立方体混凝土试件进行恒定围压下的动态三向压缩试验,侧向恒定围压分别为0MPa、4MPa、8MPa、12MPa、16MPa五个级别,应变速率分别为10-5/s、10-4/s和10-3/s三个量级,系统研究了不同恒定围压和应变速率对混凝土强度和变形特性的影响。试验表明:随着围压的增加,混凝土三轴极限抗压强度有明显的增强趋势;峰值应力处的应变值增加幅度显著。随着应变速率的增加,围压较低时,混凝土动态强度的增加趋势明显;围压较高时,动态强度随应变速率增加而增加的趋势减弱,特别是当围压值超过混凝土的单轴强度时,可以不考虑混凝土应变速率对混凝土强度的影响。得出了混凝土在不同应变速率以及不同恒定围压下的应力应变全过程曲线。  相似文献   

13.
In order to study the deformation characteristics of artificial frozen soil with thermal gradient, such as the stress-strain relationship, a series of triaxial compression tests for frozen clay had been conducted by K0DCGF (K0 consolidation, freezing with non-uniform temperature under loading) method and GFC (freezing with non-uniform temperature, isotropic consolidation) method at various consolidation pressures and thermal gradients. Stress-strain curves in K0DCGF test present strain softening during shearing process and the elastic strain is approximately 0.001;but which present the strain hardening characteristics in GFC tests and the elastic strain is approximately 0.01. The elastic modulus and peak stress for frozen clay decrease as the thermal gradient increased at different consolidation pressure both in K0DCGF test and GFC test. The peak stress and elastic modulus in K0DCGF test are significant independent on the pressure melting and crushing phenomena occurring in GFC test. To describe the shear deformation characteristics for frozen clay with thermal gradient, the exponent and power equations considering the correction equation on thermal gradient and model parameters from frozen clay with uniform temperature are developed .The results indicated that the proposed equations can reproduce the shear deformation well both in K0DCGF test and GFC test.  相似文献   

14.
Abstract

Cylindrical specimens of AISI 4340 steel, which were heat treated by quenching in oil followed by tempering at either 315 or 425°C, were impacted in a Hopkinson pressure bar at different impacting speeds. It was found that when strain and strain rate reached certain values, adiabatic shear bands (or plastic deformation zones) were formed in the specimens. The adiabatic shear bands appeared either in a circle on the transverse section, a hyperbola on different longitudinal sections without the central axis of the cylinder, and a triangle on the longitudinal section through the central axis of the cylinder. From these observations, it can be concluded that the plastic deformation localisation zone is limited in a thin conical shell in three dimensions. It was further confirmed that the adiabatic shear bands initiated along the maximum shear stress directions. In addition, the adiabatic shear bands in the specimens tempered at 315°C appeared white, while those in specimens tempered at 425°C had deformation characteristics. This indicates that the appearance of adiabatic shear bands is related to the hardness and microstructure of the tested steel.  相似文献   

15.
This paper aims to investigate the evolutions of microscopic structures of elliptical particle assemblies in both monotonic and cyclic constant volume simple shear tests using the discrete element method. Microscopic structures, such as particle orientations, contact normals and contact forces, were obtained from the simulations. Elliptical particles with the same aspect ratio (1.4 and 1.7 respectively for the two specimens) were generated with random particle directions, compacted in layers, and then precompressed to a low pressure one-dimensionally to produce an inherently anisotropic specimen. The specimens were sheared in two perpendicular directions (shear mode I and II) in a strain-rate controlled way so that the effects of inherent anisotropy can be examined. The anisotropy of particle orientation increases and the principal direction of particle orientation rotates with the shearing of the specimen in the monotonic tests. The shear mode can affect the way fabric anisotropy rate of particle orientation responds to shear strain as a result of the initial anisotropy. The particle aspect ratio exhibits quantitative influence on some fabric rates, including particle orientation, contact normal and sliding contact normal. The fabric rates of contact normal, sliding contact normal, contact force, strong and weak contact forces fluctuate dramatically around zero after the shear strain exceeds 4 % in the monotonic tests and throughout the cyclic tests. Fabric rates of contact normals and forces are much larger than that of particle orientation. The particle orientation based fabric tensor is harder to evolve than the contact normal or contact force based because the reorientation of particles is more difficult than that of contacts.  相似文献   

16.
This study presents the in-plane shear and interlaminar shear behavior of the three dimensional (3D) angle interlock preforms with different fabric densities. Picture frame shear tests for the 3D woven preform were carried out, the non-linear curves of shear stress versus shear angle and the deformation mechanism were analyzed. A new test method was designed to characterize the inter-ply shear property. The samples after interlaminar shear tests were also investigated through the yarn pulling-out and meso-structure to discover their deformation and failure mechanism. The results have shown that the fabric density has significant influence on the in-plane shear and inter-ply shear properties of 3D angle interlock preforms and the shear performance decreases with the increasing of the fabric density. The lower fabric density, the better deformability. The inter-ply shear damage mode is the binder yarn pulling out from the fabric. It is expected that the study can provide an experimental basis for building up the theoretical model.  相似文献   

17.
M. R. Allazadeh  S. N. Wosu 《Strain》2012,48(2):101-107
Abstract: The penetrating split Hopkinson pressure bar was used to study the response of dry maple wood under high strain rate impact load. Using longer bar and shorter specimens utilised the assumption of one‐dimensional stress waves travelling along the bars and specimen because the experiment fulfilled the ratio of diameter to length of bars condition in Kolsky bar experiments. The stress–strain relationships and behaviour of the fibre structure materials’ failure were investigated during the compressive dynamic tests at strain rates between 9501 and 2000 s?1. The mechanics of dynamic failure was studied and it was confirmed that deformation of specimen is a linear function of energy absorption by specimens.  相似文献   

18.
This paper reviews and gives new insight into earlier work by the author and his co-workers on the experimental investigation of the influence of superimposed hydrostatic pressure on the mechanical behavior and properties of the epoxy used for the matrix and unidirectionally laminated, graphite-fiber/ epoxy-matrix thick composites. The direction of the fibers was, respectively, 0°, 45° and 90° for the compressive test samples and 0°, 45° -45° and 90° for the shear samples.

Hydrostatic pressure induces very significant, often dramatic changes in the compressive and shear stress/ strain behavior of composites, and consequently in the elastic, yielding, deformation and fracture properties. The range of pressures covered for the compressive experiments was 1 bar to 4 kbar, and for the shear tests 1 bar to 6 kbar. The shear modulus (G) of the epoxy increased bilinearly with pressure, with the break, or the discontinuity point, occurring at 2 kbar. The compressive elastic modulus (E) and the shear modulus (G) of the composites increase in the same manner as for the epoxy. The break, which is located at 2 kbar, represents a pressure at which physical changes in the molecular motion of the matrix epoxy occur. That is, segmental motion of molecules between the cross-links is frozen in by 2 kbar pressure. This pressure is known as the secondary glass transition pressure of the epoxy at room temperature. Alternatively, the sub-zero secondary glass transition temperature of the epoxy is shifted to ambient temperature by 2 kbar pressure. The increase in the moduli may also be given a mechanical interpretation. The elastic or shear modulus of an isotropic, elastic material due to small compressive or shear deformations, respectively, superimposed on a finite volume deformation, which is caused by hydrostatic pressure, increases with pressure. Such an increase in E or G has been predicted using finite deformation theory of elasticity.

The normally brittle epoxy develops yielding when the superimposed hydrostatic pressure exceeds 2 kbar. The shear yield stress (1% off-set) of the epoxy increases linearly with pressure above 2 kbar. This kind of yielding behavior can be predicted by a pressure-dependent yield criterion. The compressive yield strength of the 45° and 90° composites increases bilinearly with pressure, and the shear yield strength of the 0°, 45° and 90° composites also increases bilinearly with pressure. This bilinear behavior is also due to the secondary glass transition pressure of the matrix epoxy, being located at 2 kbar. The fracture strength of the composites also increases with pressure linearly and the greatest increase occurs in the 45° composite in compression and in the −45° composite in shear. The fracture modes of the composites undergo changes with increasing hydrostatic pressure. For instance, the 0° composite undergoes a brittle-ductile transition under shear stress, while no such transition appears to set in under compressive stress. The fracture mode of the 45° composite changes from matrix failure at lower pressures to fiber failure at high pressures under shear stress.  相似文献   


19.
Abstract:  A set of triaxial compression tests on specimens of argillaceous rock were performed under tomographic monitoring at the European Synchrotron Radiation Facility in Grenoble, France, using an original experimental set-up developed at Laboratoire 3S , Grenoble. Complete 3D images of the specimens were recorded throughout each test using X-ray microtomography. Such images were subsequently analysed using a Volumetric Digital Image Correlation software developed at the Laboratoire de Mécanique des Solides in Palaiseau, France. Full-field incremental strain measurements were obtained, which allow to detect the onset of shear strain localisation and to characterise its development in a 3D complex pattern. Volumetric Digital Image Correlation revealed patterns which could not be directly observed from the original tomographic images, because the deformation process in the zones of localised deformation was essentially isochoric (i.e. without volumetric strain), hence not associated to density changes.  相似文献   

20.
Abstract

Hot compression tests were carried out on commercial Cu–8 wt-%Al alloy to test the effect of the deformation conditions on high temperature deformation characteristics and the final structure of the hot deformed material. Dynamic recrystallisation of the material was found to operate at deformation temperatures above ~900 K. Nucleation and growth of recrystallised grains were observed for specimens deformed at temperatures below ~1000 K. However, the flow stress peaks that usually mark the onset of dynamic recrystallisation were hardly seen on the stress–strain curves. During hot deformation of Cu–8 wt-%Al alloy above ~1000 K the interaction of →β phase transformation and deformation processes affected both the flow stress value and the structure of the material. In particular, post-deformation water quenching of the specimens resulted in martensitic transformation within pre-existing β grains. Moreover, local coherent iron particles were detected within β and neighbouring grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号