首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this paper, we propose a trellis exploration algorithm based preprocessing strategy to lower the peak‐to‐average power ratio (PAPR) of precoded MIMO‐OFDM. We first illustrate the degradation in PAPR due to optimal linear precoding in MIMO‐OFDM systems. Then we propose two forms of multi‐layer precoding (MLP) schemes to reduce PAPR. In both schemes, the inner‐layer precoder is designed to optimize system capacity/BER performance. In the first MLP scheme (MLP‐I), a common outer‐layer polyphase precoding matrix is employed. In the second MLP scheme (MLP‐II), data stream corresponding to every transmit antenna is precoded with a different outer‐layer polyphase precoding matrix. Both outer‐layer precoders are custom designed using the trellis exploration algorithm by applying the aperiodic autocorrelation of OFDM data symbols as the metric to minimize. Simulation results indicate that both MLP schemes show superior PAPR performance over conventional MIMO‐OFDM with and without precoding. In addition, MLP better exploits frequency diversity resulting in BER performance gains in multi‐path environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Differential unitary space‐time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple‐input multiple‐output orthogonal frequency division multiplexing (MIMO‐OFDM) systems with frequency‐selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO‐OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.  相似文献   

3.
In this paper, we propose symbol‐based receivers for orthogonal frequency division multiplexing (OFDM) code‐division multiple‐access (CDMA) multiple‐input‐multiple‐output (MIMO) communications in multipath fading channels. For multiuser and multipath fading environments, both intersymbol interference and multiple‐access interference must be considered. We propose narrowband and wideband antennas and Wiener code filter for MIMO OFDM‐CDMA systems. The proposed receivers are updated symbol‐by‐symbol to achieve low computational complexity. Simulation results show that the proposed Wiener code filter can improve the system performance for the proposed adaptive antennas. The wideband antenna can achieve better error‐rate performance than that of the narrowband antenna when multipath effect exists. The convergence rate of the recursive least squares antennas is faster than that of the least mean square antennas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A multi-Cyclic Redundancy Check (CRC) selective Hybrid Automatic-Repeat-reQuest (HARQ) scheme for improving the throughput efficiency of Multiple Input Multiple Output (MIMO) systems is proposed in this paper. According to different feedback information from the receiver, the proposed HARQ scheme employs two strategies, referred to as retransmission frame selection and space diversity. These two strategies decrease the successive frame errors upon retransmission. Theoretic analysis and computer simulation results show that this HARQ scheme achieves higher throughput than the existing HARQ schemes even in poor conditions of low Signal-to-Noise Ratio (SNR).  相似文献   

5.
In‐band full‐duplex (IFD) communication has recently attracted a great deal of interest because it potentially provides a two‐fold spectral efficiency increase over half‐duplex communications. In this paper, we propose a novel digital self‐interference cancelation (DSIC) algorithm for an IFD communication system in which two nodes exchange orthogonal frequency‐division multiplexing (OFDM) symbols. The proposed DSIC algorithm is based on the least‐squares estimation of a self‐interference (SI) channel with block processing of multiple OFDM symbols, in order to eliminate the fundamental and harmonic components of SI induced through the practical radio frequency devices of an IFD transceiver. In addition, the proposed DSIC algorithm adopts discrete Fourier transform processing of the estimated SI channel to further enhance its cancelation performance. We provide a minimum number of training symbols to estimate the SI channel effectively. The evaluation results show that our proposed DSIC algorithm outperforms a conventional algorithm.  相似文献   

6.
In this paper, we first analyze carrier‐to‐interference ratio performance of the space–frequency block coded orthogonal frequency‐division multiplexing (SFBC‐OFDM) system in the presence of phase noise (PHN) and residual carrier frequency offset (RCFO). From the analysis, we observe that conventional SFBC‐OFDM systems suffer severely in the presence of PHN and RCFO. Therefore, we propose a new inter‐carrier interference (ICI) self‐cancellation method — namely, ISC — for SFBC‐OFDM systems to reduce the ICI caused by PHN and RCFO. Through the simulation results, we show that the proposed scheme compensates the ICI caused by PHN and RCFO in Alamouti SFBC‐OFDM systems and has a better performance than conventional schemes.  相似文献   

7.
Since the concept of the multiuser multiple input multiple output (MU‐MIMO) system has been introduced for enhancement of capacity and flexibility, it has been accepted in various wireless standards. To enjoy the benefits of the MU‐MIMO system, full or partial channel information is necessary at the transmitter, but how to use the full or partial feedback information in the practical system perspective has not been investigated well. In this paper, we analyze the interference of full usage concurrent transmission codebook based on the MU‐MIMO systems and also investigate the usage of channel information for a codebook based scheme and a zero‐forcing beamforming (ZFBF) scheme. Based on the analytic results, we propose two adaptive schemes for the practical usage perspective in MU‐MIMO‐OFDM systems. Firstly, we propose an adjustable uplink channel sounding scheme, which depends on the number of users in a given cell/sector in frequency division duplexing system, with ZFBF MU‐MIMO‐OFDM systems. Secondly, we propose an adaptive switching scheme, which depends on signal‐to‐noise ratio, between the codebook based scheme and the ZFBF scheme. The performance of the proposed scheme is evaluated with computer simulations, and the simulation results show that the proposed scheme provides the enhanced throughput over entire signal‐to‐noise‐ratio regions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In single‐input and single‐output (SISO) systems, the vector orthogonal frequency division multiplexing (VOFDM) has been proposed to reduce the cyclic prefix length, whereas the precoded OFDM has been proposed to overcome spectral‐null channels. However, VOFDM does not show robustness to spectral‐null channels, and the precoded OFDM system has expanded data rate. This work proposes the optimal and suboptimal modulation schemes in vector OFDM systems with knowledge of the channel impulse response (CIR) in order to reduce the bit error rate (BER). As the BER performance is determined by the diversity of the received vector symbols, the proposed modulation scheme mainly concerns the minimal Euclidean distance of all the possible received vector symbols. Through the analysis of the vector input and output equations, we derive the Euclidean distance of the received vector symbols. Then, we propose optimal and suboptimal modulation schemes in VOFDM system to overcome spectral‐null channels by improving the minimal Euclidean distance. Both theoretical performance analysis and simulation results are presented to show the robustness of our system. Finally, we conduct a compared performance analysis of the proposed VOFDM system, the conventional precoded OFDM system, and the conventional VOFDM system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose an efficient soft‐output signal detection method for spatially multiplexed multiple‐input multiple‐output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC algorithm with a multiple‐channel‐ordering technique in a very efficient way. As a result, the log likelihood ratio values can be computed by using a very small set of candidate symbol vectors. The proposed method has been synthesized with a 0.13‐μm CMOS technology for a 4×4 16‐QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.  相似文献   

10.
In this paper, we consider the narrowband interference problem for orthogonal frequency division multiplexing (OFDM)‐based cognitive radio (CR) systems, in which parts of the OFDM subcarriers and parts of the data frame can be seriously interfered, resulting in significant performance degradation. We propose a scheme of iterative noise plus interference estimation and decoding (IED) to mitigate the performance degradation caused by the narrowband interference, which is based on expectation maximization (EM) algorithm. To reduce the number of OFDM symbols for time domain averaging required in the proposed scheme, and adapt the proposed scheme to rapid changing narrowband interference conditions, we also propose an IED scheme with frequency domain partial averaging (IED‐FPA). Moreover, we derive the Cramér‐Rao lower bounds for unbiased noise plus interference variance estimations, and they can be achieved via the proposed IED schemes. Simulation results show that the proposed IED‐FPA scheme can effectively achieve the same performance as that of the optimal maximum likelihood decoder with full knowledge of the power plus interference variances, and the proposed IED‐FPA scheme is very robust with respect to the number of the interfered subcarriers and positive errors of the knowledge of the interfered subcarriers' number. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Minimum transmit sum power (MTSP) is of high theoretical and practical value in multi‐user rate‐constrained systems; it is, however, quite difficult to be numerically characterized in complex channels for the prohibitively high computational power required. In this paper, we present a computationally efficient method to approximate the MTSP in multi‐user multiple‐input multiple‐output orthogonal frequency division multiplexing (MU‐MIMO‐OFDM) wireless networks. Specifically, we propose both lower and upper bounds of the MTSP, which are asymptotically accurate in the limit of large K, the number of users. Then, we develop two iterative water‐filling algorithms to numerically solve the proposed bounds. These algorithms are with low complexity, that is, linear in K, and therefore enable the analysis of MTSP in complex channels even if K is large. Numerical results demonstrate the effectiveness of the bounds in approximating the MTSP and the high computational efficiency of the proposed iterative water‐filling algorithms. With the proposed bounds, we further numerically study scheduling power gain (SPG), which is defined as MTSP reduction achieved by scheduling resources over multiple channel blocks in time domain. We simulate the SPG in different wireless environments defined in Third Generation Partnership Project spatial channel extended model and find insignificant SPG in some cases, indicating that the benefit from scheduling over multiple channel blocks is limited and simply allocating resources within the present channel is sufficient. Our analysis on the MTSP and SPG provides guidelines on the design of resource schedulers in MU‐MIMO‐OFDM networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Weighted overlap and add‐orthogonal frequency division multiplexing (WOLA‐OFDM) is a new waveform proposed recently for meeting the requirements of fifth generation (5G) telecommunication standards. In spite of being a serious 5G waveform candidate, WOLA‐OFDM is exposed to the problem of high peak to average power ratio (PAPR) similar to the other waveforms in which multicarrier transmission strategy is employed. Due to the overlapping nature of WOLA‐OFDM waveform, where the extension of the current symbol is overlapped with the extension of the previous symbol, it will not be efficient to apply conventional PTS (C‐PTS) directly to the WOLA‐OFDM waveform. Therefore, in this paper, we propose dual symbol optimization‐based partial transmit sequence (DSO‐PTS) technique for PAPR reduction in WOLA‐OFDM waveform. In our proposed technique, two adjacent symbols are jointly considered when searching for the optimal data block with minimum PAPR unlike the C‐PTS where the adjacent symbols are optimized individually. In the simulations, our proposed DSO‐PTS technique, C‐PTS, and GreenOFDM that is developed recently by modifying the conventional selective mapping (SLM) method are compared with each other with regard to PAPR reduction performance for different search numbers (SNs). In addition, the effects of DSO‐PTS, C‐PTS, and GreenOFDM on the amount of out of band (OOB) radiation in the power spectral density (PSD) graph of WOLA‐OFDM employing solid state power amplifier (SSPA) is measured for different SNs and input back off (IBO) values. According to the simulation results, our proposed DSO‐PTS technique clearly demonstrates a superior PAPR reduction and PSD performance.  相似文献   

13.
This paper presents the idea of sparse channel estimation using compressed sensing (CS) method for space–time block coding (STBC), and spatially multiplexing (SM) derived hybrid multiple‐input multiple‐output (MIMO) Asymmetrically clipped optical‐orthogonal frequency division multiplexing (ACO‐OFDM) optical wireless communication system. This hybrid system accounts multiplexing gain of SM and diversity gain of STBC technique. We present a new variant of sparsity adaptive matching pursuit (SaMP) algorithm called dynamic step‐size SaMP (DSS‐SaMP) algorithm. It makes use of the inherent and implicit structure of SaMP, along with dynamic adaptivity of step‐size feature which is compatible with the energy of the input signal, thus the name dynamic step size. Existing CS‐based recovery algorithms like orthogonal matching pursuit, SaMP, adaptive step‐size SaMP, and proposed DSS‐SaMP were compared for hybrid MIMO‐ACO‐OFDM visible light communication system. The performance analysis is demonstrated through simulation results with respect to bit error rate, symbol error rate, mean square error, computational complexity, and peak‐to‐average power ratio. Simulation results show that the proposed technique gives improved performance and lesser computational complexity in comparison with conventional estimation algorithms.  相似文献   

14.
混合自动重传请求(HARQ)是一种保证可靠通信的差错控制方式。通过采用空分复用MIMO技术和HARQ机制,可以进行高速可靠的通信。该文提出了一种MIMO-HARQ系统中以低反馈量进行序贯功率分配的传输方法,接收机根据当前的信道信息,搜索下次HARQ重传使用的最优天线间功率分配矢量,并将其序号反馈给发射机,序贯地实现码流间的功率分配。这种方法不仅需要的反馈量少,而且对反馈延迟的要求也很低。仿真分析表明,该方法可以显著提高系统在空间相关信道下的误码性能。  相似文献   

15.
Recently, orthogonal frequency‐division multiplexing (OFDM) was applied to VLC systems owing to its high rate capability. On the other hand, a real‐valued unipolar OFDM signal for VLC significantly reduces bandwidth efficiency. For practical implementation, channel estimation is required for data demodulation, which causes a further decrease in spectral efficiency. In addition, the large fluctuation of an OFDM signal results in poor illumination quality, such as chromaticity changes. This paper proposes a spectrally efficient method based on a hidden‐pilot‐aided precoding technology for VLC with less flickering than a conventional OFDM‐based method. This approach can obtain channel information without any loss of bandwidth efficiency while ensuring illumination quality by reducing the flickering effect of an OFDM‐based VLC. The simulation results show that the proposed method provides a 6.4% gain in bandwidth efficiency with a 4% reduction in flicker compared to a conventional OFDM‐based method.  相似文献   

16.
In this paper, a new technique for the blind estimation of frequency and/or time‐selective multiple‐input multiple‐output (MIMO) channels under space‐time block coding (STBC) transmissions is presented. The proposed method relies on a basis expansion model (BEM) of the MIMO channel, which reduces the number of parameters to be estimated, and includes many practical STBC‐based transmission scenarios, such as STBC‐orthogonal frequency division multiplexing (OFDM), space‐frequency block coding (SFBC), time‐reversal STBC, and time‐varying STBC encoded systems. Inspired by the unconstrained blind maximum likelihood (UML) decoder, the proposed criterion is a subspace method that efficiently exploits all the information provided by the STBC structure, as well as by the reduced‐rank representation of the MIMO channel. The method, which is independent of the specific signal constellation, is able to blindly recover the MIMO channel within a small number of available blocks at the receiver side. In fact, for some particular cases of interest such as orthogonal STBC‐OFDM schemes, the proposed technique blindly identifies the channel using just one data block. The complexity of the proposed approach reduces to the solution of a generalized eigenvalue (GEV) problem and its computational cost is linear in the number of sub‐channels. An identifiability analysis and some numerical examples illustrating the performance of the proposed algorithm are also provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This paper proposes a new adaptive iterative method to impulsive noise mitigation in OFDM systems over in‐home power line channels. The performance of impulsive noise mitigation methods based on OFDM decreases when the impulsive noise energy is higher than a certain threshold. To compensate for the limitations of these systems and to be able to adopt it for all sub‐carriers, here, the 64‐QAM constellation is applied together with Alamouti space time coding to transmit, MIMO In‐home power line channel and zero‐forcing estimate (ZFE) with continuous loop impulsive noise detection and mitigation together with maximum‐likelihood detection (MLD) are adopted to receive. At the receiver, after ZFE, impulsive noise detection algorithm based on adaptive threshold for estimating the impulsive noise, determines the locations and amplitudes of the impulsive noises. The effect of impulsive noise on the noise symbols using the mask based on the soft decision method is reduced. Later, using MLD, the original signal is estimated. The algorithm is simulated and analyzed, and its performance is compared to other methods. The results show the superiority and robustness of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this letter, we propose an efficient near‐optimal detection scheme (that makes use of a generalized sphere decoder (GSD)) for blind multi‐user multiple‐input multiple‐output (MU‐MIMO) systems. In practical MU‐MIMO systems, a receiver suffers from interference because the precoding matrix, the result of the precoding technique used, is quantized with limited feedback and is thus imperfect. The proposed scheme can achieve near‐optimal performance with low complexity by using a GSD to detect several additional interference signals. In addition, the proposed scheme is suitable for use in blind systems.  相似文献   

19.
Orthogonal frequency‐division multiplexing (OFDM) suffers from spectral nulls of frequency‐selective fading channels. Linear precoded (LP‐) OFDM is an effective method that guarantees symbol detectability by spreading the frequency‐domain symbols over the whole spectrum. This paper proposes a computationally efficient and low‐cost implementation for discrete Hartley transform (DHT) precoded OFDM systems. Compared to conventional DHT‐OFDM systems, at the transmitter, both the DHT and the inverse discrete Fourier transform are replaced by a one‐level butterfly structure that involves only one addition per symbol to generate the time‐domain DHT‐OFDM signal. At the receiver, only the DHT is required to recover the distorted signal with a single‐tap equalizer in contrast to both the DHT and the DFT in the conventional DHT‐OFDM. Theoretical analysis of DHT‐OFDM with linear equalizers is presented and confirmed by numerical simulation. It is shown that the proposed DHT‐OFDM system achieves similar performance when compared to other LP‐OFDMs but exhibits a lower implementation complexity and peak‐to‐average power ratio.  相似文献   

20.
In this paper, we first propose a simplified tone reservation (STR) method with low computational complexity which is based on the Fourier series expansion. Then, we analyze how to combine the STR method with the cross antenna rotation and inversion method to reduce the peak‐to‐average power ratio (PAPR) for multi‐input multi‐output orthogonal frequency division multiplexing (MIMO‐OFDM) system. To validate the analytical results, extensive simulations are conducted and the numerical results show the efficiency of the proposed schemes including the PAPR reduction and low computational complexity for MIMO‐OFDM system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号