首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zirconia-toughened alumina (Al2O3–15 vol% Y-PSZ (3 mol% Y2O3)) reinforced with 10 vol% silicon carbide whiskers (ZTA-10SiC w ) ceramic matrix composite has been characterized with respect to its room-temperature mechanical properties, thermal shock resistance, and thermal stability at temperatures above 1073 K. The current ceramic composite has a flexural strength of ∽550 to 610 MPa and a fracture toughness, K IC , of ∽5.6 to 5.9 MPa·m1/2 at room temperature. Increases in surface fracture toughness, ∽30%, of thermally shocked samples were observed because of thermal-stress-induced tetragonal-to-monoclinic phase transformation of tetragonal ZrO2 grains dispersed in the matrix. The residual flexural strength of ZTA–10 SiC w ceramic composite, after single thermal shock quenches from 1373–1573 to 373 K, was ∽10% higher than that of the unshocked material. The composite retained ∽80% of its original flexural strength after 10 thermal shock quenches from 1373–1573 to 373K. Surface degradation was observed after thermal shock and isothermal heat treatments as a result of SiC whisker oxidation and surface blistering and swelling due to the release of CO gas bubbles. The oxidation rate of SiC whiskers in ZTA-10SiC w composite was found to increase with temperature, with calculated rates of ∽8.3×10−8 and ∽3.3×10−7 kg/(m2·s) at 1373 and 1573 K, respectively. It is concluded that this ZTA-10SiC w composite is not suitable for high-temperature applications above 1300 K in oxidizing atmosphere because of severe surface degradation.  相似文献   

2.
Al2TiO5 materials were sintered under different conditions to produce different grain sizes. The resultant microcracked materials exhibited a range of bulk thermal expansions which showed a strong correlation with average grain size. An Al2TiO5 average grain size of 3 to 4 μm was the minimum at which the size and population of microcracks effectively reduced the apparent thermal expansion of the polycrystalline material. Further increases in grain size resulted in a rapid drop in the bulk thermal expansion, followed by diminishing decreases with further increases in grain size. Small amounts of phase stabilizers (<2.1 wt% MgO or Fe2O3) or limited mullite additions in mullite—aluminum titanate composites had no significant effect on this correlation.  相似文献   

3.
Flexural creep studies were conducted in a commercially available alumina matrix composite reinforced with SiC particulates (SiCp) and aluminum metal at temperatures from 1200° to 1300°C under selected stress levels in air. The alumina composite (5 to 10 μm alumina grain size) containing 48 vol% SiC particulates and 13 vol% aluminum alloy was fabricated via a directed metal oxidation process (DIMOX(tm))† and had an external 15 μm oxide coating. Creep results indicated that the DIMOX Al2O3–SiCp composite exhibited creep rates that were comparable to alumina composites reinforced with 10 vol% (8 (μm grain size) and 50 vol% (1.5 μm grain size) SiC whiskers under the employed test conditions. The DIMOX Al2O3–SiCp composite exhibited a stress exponent of 2 at 1200°C and a higher exponent value (2.6) at ≥ 1260°C, which is associated with the enhanced creep cavitation. The creep mechanism in the DIMOX alumina composite was attributed to grain boundary sliding accommodated by diffusional processes. Creep damage observed in the DIMOX Al2O3-SiCp composite resulted from the cavitation at alumina two-grain facets and multiple-grain junctions where aluminum alloy was present.  相似文献   

4.
Aluminum titanate (Al2TiO5) is an excellent refractory and thermal shock resistant material due to its relatively low-thermal expansion coefficient and high melting point. However, Al2TiO5 is only thermodynamically stable above 1280°C and undergoes a eutectoid decomposition to α-Al2O3 and TiO2 (rutile) in the temperature range of 900°–1280°C. In this paper, we describe the use of high-temperature neutron diffraction to study the properties of self-recovery in Al2TiO5 when it is annealed at ≥1300°C in air. It is shown that the process of decomposition in Al2TiO5 is reversible and that self-recovery occurs readily when decomposed Al2TiO5 is reheated above 1300°C. It is further shown that the existence of a temperature range (900°–1280°C) in which Al2TiO5 is prone to decomposition can be explained by the competing dominance of self-recovery at ≥1280°C and decomposition at ≤1280°C.  相似文献   

5.
Aluminum titanate (Al2TiO5) is a promising engineering material because of its low thermal expansion coefficient, excellent thermal shock resistance, good refractoriness, and nonwetting with most metals. However, it is susceptible to thermal dissociation in the temperature range of 800°–1280°C, which degrades its desirable properties. In this work, the various factors controlling the thermal instability of Al2TiO5 in the temperature range of 20°–1100°C have been characterized by neutron diffraction to study the temperature- and time-dependence structural changes in real time during the process of thermal decomposition. Results show that the thermal stability of Al2TiO5 is strongly influenced by temperature, dwell time, heating rate, phase purity, grain size, atmosphere, and additives. Possible mechanisms of structure stabilization and instability in Al2TiO5 under different conditions are discussed.  相似文献   

6.
The thermal shock resistance of sintered Al2O3/1, 2.5, and 5 vol% SiC nanocomposites was studied using two indentation techniques. In the first technique, "indentation thermal shock" measurements were made of the extension of median/radial cracks around Vickers indentations after quenching from various temperatures (up to 480°C) into a bath of boiling water. This technique allowed a critical thermal shock temperature, Δ T CInd, to be quantitatively evaluated. In the second technique, "indentation fatigue" tests were conducted on the thermally shocked specimens; repeated indentations were made at the same site, and the number of load cycles needed to initiate lateral fracture was measured. The results showed that nanocomposites with an addition of SiC nanophase as low as 1 vol% had a thermal shock resistance superior to that of pure Al2O3.  相似文献   

7.
The characterization and properties of ceramic composites containing the phases Al2TiO5, ZrTiO4, and ZrO2 are described. The range of compositions investigated gives very low average thermal expansions (α24–1000°C as low as −2.0 × 10−6°C−1) and excellent high-temperature stability. The low thermal expansions are apparently due to a combination of microcracking by the titanate phases and a contractive phase transformation by the ZrO2. The crystal chemistry and microstructure of the product are processing dependent. Although the composites represent a complex microcracking system, the low thermal expansions and high-temperature stability make them potential candidates for commercial applications requiring thermal shock resistance.  相似文献   

8.
In part I of this work, it was found that titanium (Ti) wire encapsulated within mechanically milled alumina powder and sintered at 1350°C forms potentially useful microcavities due to the consolidation of Kirkendall porosity. Here a series of samples sintered at 1350°C in the range 0–24 h has shown the remarkable way in which these cavities form. The cavity has already started in samples quenched from the top of the heating ramp (0 min at 1350°C). It is surrounded by a diffusion zone ∼300 μm in diameter, which does not change size throughout the firing process although the contents change markedly. The diffusion zone microstructure is initially complex with phase sequence TiO2/Al2O3/TiO2+Al2O3/Al2TiO5. Microstructure evolution may be summarized as outward growth of the cavity accompanied by inward growth of the Al2TiO5 resulting in a ∼190-μm-diameter cavity surrounded by a 50-μm-thick layer of Al2TiO5. The formation of the cavity and surrounding microstructure is discussed although some features, such as the nucleation of Al2TiO5 in the part of the diffusion zone furthest from the Ti source and the ring of Al2O3, which persists in between Ti-rich parts of the diffusion zone are still poorly understood.  相似文献   

9.
Synthesis and Thermal Stability of Aluminum Titanate Solid Solutions   总被引:4,自引:0,他引:4  
Aluminum titanate solid solutions with empirical formulas of Al2Ti1-xZrxO5, Al6(2-x)(6+x)Si6x/(6+x)6x/(6+x)TiO5, and Al2(1-x)MgxTi1+xO5 were synthesized by reaction sintering and annealed at 900° to 1300°C in air to evaluate the thermal stability. Substitution of Al in Al2TiO5 by Si and 2Al by Mg and Ti ions to form solid solutions such as AI6(2-x)/(6+x)l-Si6x/(6+x)□6x/(6+x)TiO5, and Al2(1-x)MgxTi1+xO5 was effective in controlling the thermal decomposition, but substitution of Ti by Zr had little effect.  相似文献   

10.
11.
An unagglomerated, monosized Al2O3TiO2 composite powder was prepared by the stepwise hydrolysis of titanium alkoxide in an Al2O3 dispersion. Particle size was controlled by selecting the particle size of the starting Al2O3 powder; TiO2 content was determined by the amount of alkoxide hydrolyzed. A composite-powder compact containing 50 mol% TiO2, when fired at 1350°C for 30 min, showed nearly theoretical density with aluminum titanate phase formation.  相似文献   

12.
Seeding a mixture of boehmite (AIOOH) and colloidal ZrO2 with α-alumina particles and sintering at 1400°C for 100 min results in 98% density. The low sintering temperature, relative to conventional powder processing, is a result of the small alumina particle size (∼0.3 μm) obtained during the θ-to α-alumina transformation, homogeneous mixing, and the uniform structure of the sol-gel system. Complete retention of pure ZrO2 in the tetragonal phase was obtained to 14 vol% ZTA because of the low-temperature sintering. The critical grain size for tetragonal ZrO2 was determined to be ∼0.4 μm for the 14 vol% ZrO2—Al2O3 composite. From these results it is proposed that seeded boehmite gels offer significant advantages for process control and alumina matrix composite fabrication.  相似文献   

13.
The composite sol—gel (CSG) technology has been utilized to process SiC—Al2O3 ceramic/ceramic particulate reinforced composites with a high content of SiC (up to 50 vol%). Alumina sol, resulting from hydrolysis of aluminum isopropoxide, has been utilized as a dispersant and sintering additive. Microstructures of the composites (investigated using TEM) show the sol-originating phase present at grain boundaries, in particular at triple junctions, irrespective of the type of grain (i.e., SiC or Al2O3). It is hypothesized that the alumina film originating from the alumina sol reacts with SiO2 film on the surface of SiC grains to form mullite or alumina-rich mullite-glass mixed phase. Effectively, SiC particles interconnect through this phase, facilitating formation of a dense body even at very high SiC content. Comparative sinterability studies were performed on similar SiC—Al2O3 compositions free of alumina sol. It appears that in these systems the large fraction of directly contacting SiC—SiC grains prevents full densification of the composite. The microhardness of SiC—Al2O3 sol—gel composites has been measured as a function of the content of SiC and sintering temperature. The highest microhardness of 22.9 GPa has been obtained for the composition 50 vol% SiC—50 vol% Al2O3, sintered at 1850°C.  相似文献   

14.
The field-activated sintering technique (FAST) was applied to simultaneously sinter and react sol–gel amorphous powders to form Al2TiO5. Densities close to theoretical and conversion to Al2TiO5 (to 92.5%) have been achieved using FAST at 1050°–1200°C for 10 min. Conventional sintering of the same powders at 1300°C for 2 h resulted in 88.9% Al2TiO5 and ∼75% of theoretical density. The enhanced sintering and compound formation using FAST have been explained by the synergistic effects of precursor reactivity, nanosized powders, and electric-field effects.  相似文献   

15.
Interpenetrating phase composite (IPC) coatings consisting of continuously connected Al2O3 and epoxy phases were fabricated. The ceramic phase was prepared by depositing an aqueous dispersion of Al2O3 (0.3 μm) containing orthophosphoric acid, H3PO4, (1–9.6 wt%, solid basis) and heating to create phosphate bonds between particles. The resulting ceramic coating was porous, which allowed the infiltration and curing of a second-phase epoxy resin. The effect of dispersion composition and thermal processing conditions on the phosphate bonding and ceramic microstructure was investigated. Reaction between Al2O3 and H3PO4 generated an aluminum phosphate layer on particle surfaces and between particles; this bonding phase was initially amorphous, but partially crystallized upon heating to 500°C. Flexural modulus measurements verified the formation of bonds between particles. The coating porosity (and hence epoxy content in the final IPC coating) decreased from ∼50% to 30% with increased H3PO4 loading. The addition of aluminum chloride, AlCl3, enhanced bonding at low temperatures but did not change the porosity. Diffuse reflectance FTIR showed that a combination of UV and thermal curing steps was necessary for complete curing of the infiltrated epoxy phase. Al2O3/epoxy IPC coatings prepared by this method can range in thickness from 1 to 100 μm and have potential applications in wear resistance.  相似文献   

16.
Ceria-doped tetragonal zirconia (Ce-TZP)/alumina (Al2O3) composites were fabricated by sintering at 1450° to 1600°C in air, followed by hot isostatic pressing (postsintering hot isostatic pressing) at 1450°C and 100 MPa in an 80 vol% Ar–20 vol% O2 gas atmosphere. Dispersion of Al2O3 particles into Ce-TZP was useful in increasing the relative density and suppressing the grain growth of Ce-TZP before hot isostatic pressing, but improvement of the fracture strength and fracture toughness was limited. Postsintering hot isostatic pressing was useful to densify Ce-TZP/Al2O3 composites without grain growth and to improve the fracture strength and thermal shock resistance.  相似文献   

17.
Microstructural development of thin-film barium strontium titanate (Ba x Sr1– x TiO3) as a function of strontium concentration and thermal treatment were studied, using transmission electron microscopy (TEM) and X-ray diffractometry (XRD). Thin films, ∼250 nm thick, were spin-coated onto Pt/Ti/SiO2/Si substrates, using methoxypropoxide alkoxide precursors, and crystallized by heat-treating at 700°C. All films had the cubic perovskite structure, and their lattice parameters varied linearly with strontium content. Films with higher strontium concentrations had a larger average grain size. In situ TEM heating experiments, combined with differential thermal analysis/thermogravimetric analysis results, suggest that the gel films crystallize as an intermediate carbonate phase, Ba x Sr1– x TiO2CO3 (with a solid solution range from x = 1 to x = 0). Before decomposition at 600°C, this carbonate phase inhibits the formation of the desired perovskite phase.  相似文献   

18.
The formation of Al2TiO5 has been studied in equimolar Al2O3-TiO2 powder mixtures of ∼1μm particle sizes and moderate purity (∼99.8 wt%) at temperatures around 1300°C, where the free energy of formation is very small. Micro-structural development and reaction kinetics indicate that different mechanisms operate depending on the advancement of the reaction. The rapid initial reaction stage is interpreted as the nucleation-growth of Al2TiO5 cells in a virtually non-reacting matrix. The final reaction stage corresponds to the slow diffusion-controlled elimination of Al2O3 and TiO2 dispersoids trapped during the growth of the initial Al2TiO5 cells.  相似文献   

19.
The cyclic thermal shock behavior of two Si3N4 ceramics, two SiC-whisker-reinforced alumina composites (Al2O3/SiCw), a SiC-particulate-reinforced alumina (Al2O3/SiCp), and an alumina continuously reinforced with SiC fibers (Al2O3/SiCf) composite has been studied. Specimens were repeatedly quenched from 1473 K into a fluidized bed with a heat transfer coefficient of 1400 W/(Km2) [250 Btu/(hft2F)]. The thermal shock damage was assessed by room-temperature flexure strength measurements. Si3N4 and Al2O3/SiCp showed no noticeable damage after 100 cycles, whereas Al2O3/SiCw and Al2O3/SiCf degraded substantially. The experimental results are discussed and rationalized in terms of finite element simulations and microstructural observations. Our analysis suggests that the thermal shock performance of other materials may be estimated from comparisons with the present work.  相似文献   

20.
Al2O3-MoSi2 composites were prepared by reactive hot pressing using molybdenum, aluminum, and mullite powders as precursors. The Gibbs free energy was highly negative for the composite-forming reaction, which indicated that the products were stable relative to the reactants. After the reaction, the composites had high relative density, ∼96%. Based on the composite-forming reaction, the composites should have contained 18 vol% MoSi2 in an Al2O3 matrix. Scanning electron microscopy revealed that the MoSi2 inclusions were elongated, with an average thickness of ∼5 μm and inclusion lengths that ranged from 5 to 50 μm. Average composite strength was 467 MPa, and toughness was 3.7 MPa·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号