首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
磁控溅射SiC/W纳米多层膜的微结构研究   总被引:2,自引:0,他引:2  
用磁控溅射法在Si基底上制备了不同调制波长的SiC/W纳米多层膜。利用小角度X射线衍射技术,详细研究了其中典型的多层膜的调制周期性。各子层的厚度及界面平整度等界面微观结构。结果表明:磁控溅射法制备的纳米多层膜具有较好的周期结构及陡峭的界面梯度,由衍射峰位置计算出的界面不均匀旗与子层厚度之比一般在5%以内。  相似文献   

2.
直流磁控溅射法制备金钆多层膜   总被引:1,自引:0,他引:1  
本文介绍了直流磁控溅射方法制备Au/Gd多层膜,探索了多层膜的制备工艺参数,利用X射线衍射表征了多层膜的界面结构及混和膜的晶型结构,原子力显微镜观察了膜的表面形貌和粗糙度。成功地制备了膜层厚度控制精确、界面清晰和表面光洁的Au/Gd多层膜。  相似文献   

3.
采用多靶磁控溅射法制备了一系列具有不同SiO2调制层厚的TiN/SiO2纳米多层膜.利用X射线衍射、X射线能量色散谱、扫描电子显微镜、高分辨电子显微镜和微力学探针表征和研究了多层膜的生长结构和力学性能.结果表明,具有适当厚度(0.45~0.9 nm)的SiO2调制层,在溅射条件下通常为非晶态,在TiN层的模板作用下晶化并与TiN层共格外延生长,形成具有强烈(111)织构的超晶格柱状晶多层膜;与此相应,纳米多层膜产生了硬度和弹性模量异常增高的超硬效应(最高硬度达45 GPa).随着SiO2层厚度的继续增加,SiO2层转变为非晶态,阻断了多层膜的共格外延生长,使纳米多层膜形成非晶SiO2层和纳米晶TiN层的多层结构,多层膜的硬度和弹性模量逐渐下降.  相似文献   

4.
本文采用直流磁控溅射法制备了一系列Ni/Ti周期性多层膜,用X射线小角衍射进行周期结构分析。主要研究了不同的制备工艺条件下,Ni/Ti周期性多层膜周期厚度和界面粗糙度的变化规律,从而归纳出最佳的溅射工艺条件。研究发现采用移动模式制备出的多层膜,其周期厚度的均匀性以及界面粗糙度均优于固定模式;并且在移动模式下制备的多层膜其界面粗糙度,随基片架移动速率的增大而减小。  相似文献   

5.
采用非对称双极脉冲磁控溅射制备了一系列不同调制周期的TiN/NbN纳米多层膜,利用X射线衍射分析(XRD)、纳米压痕仪、扫描电子显微镜(SEM)表征了薄膜的微观结构、力学性能和断口形貌。结果表明,在调制周期为19.86nm时,纳米压痕硬度达到43GPa。利用三点弯曲法形成裂纹的扩展,并观察到了裂纹的偏转特征。  相似文献   

6.
选择ZrC和ZrB2为个体层材料,利用射频磁控溅射系统在室温下制备具有纳米尺寸的ZrC/ZrB2多层膜.通过X射线衍射仪、扫描电子显微镜、俄歇电子能谱、表面轮廓仪及纳米力学测试系统研究了调制周期与ZrC,ZrB2单层厚度比例(tZrCtZrB2)对多层膜生长结构和力学性能的影响.结果表明,多层膜的界面清晰,调制周期性好,大部分多层膜的纳米硬度和弹性模量值都高于两种个体材混合相的值,在调制比例tZrCtZrB2=11.7、调制周期为32 nm时,薄膜显示出很强的ZrC(111)择优趋向和较弱的ZrB2(001)及ZrB2(002)结构,同时产生硬度异常升高的超硬效应,其硬度达到42 GPa.多层膜的机械性能改善明显与其调制结构和多晶结构有着直接的联系.  相似文献   

7.
采用多靶反应磁控溅射制备了一系列TiAlN层厚固定,TiN层厚在一定范围内连续变化的不同调制结构的TiAlN/TiN纳米多层膜,并使用X射线衍射分析、扫描电子显微镜、纳米压痕仪和CETR-UMT-3型多功能摩擦磨损试验机对多层膜的微观结构和力学性能进行了表征和分析。研究结果表明:TiAlN/TiN纳米多层膜形成了周期性良好的成分调制结构,其中TiN层的插入并没有打断TiAlN层的柱状晶生长。在一定的调制周期下,TiN层和TiAlN层能够形成共格外延生长结构,多层膜呈现硬度异常升高的超硬效应,当TiN层厚约为1.6 nm时多层膜的硬度达到最大值50 GPa,并具有相比于TiAlN单层膜更低的摩擦系数。进一步增加TiN层厚,由于多层膜共格界面结构的破坏,多层膜的硬度随之降低。  相似文献   

8.
用磁控溅射技术制备了周期性良好的Fe-N/Ti-N纳米多层膜。Ti-N单层的厚度固定为3nm,Fe-N单层的厚度在2.5~11nm之间变化。用振动样品磁强计研究了样品的磁性,用X射线衍射研究了样品的结构。发现在Fe-N层较薄的样品中,饱和磁化强度明显提高,而矫顽力在所有样品中基本相同。  相似文献   

9.
通过反应磁控溅射制备了一系列不同Si3N4层厚的HfC/Si3N4纳米多层膜,采用X射线光电子能谱、X射线衍射、扫描电子显微镜和微力学探针表征了多层膜的微结构、硬度与弹性模量,研究了Si3N4层厚度变化对纳米多层膜微结构与力学性能的影响。结果表明,溅射的Si3N4粒子不与C2H2气体反应,因NaCl结构HfC晶体调制层的模板效应,溅射态为非晶的Si3N4层在厚度小于约1 nm时被强制晶化,并与HfC晶体层形成共格外延生长结构,多层膜呈现强烈的(111)择优取向柱状晶,其硬度和弹性模量显著上升,最高值分别达到38.2 GPa和343 GPa。进一步增加Si3N4层的厚度后,Si3N4层转变为以非晶态生长,多层膜的共格外延生长结构受到破坏,其硬度和模量也相应降低。  相似文献   

10.
采用射频磁控溅射制备不同调制周期的TiAlSiN/Mo2N多层膜。利用X射线衍射,扫描电镜,能量弥散X射线谱,纳米压痕仪及摩擦试验机对薄膜的成分,相结构,力学及室温摩擦性能进行分析。结果表明,不同调制周期的TiAlSiN/Mo2N多层膜为fcc与hcp混合结构,不同调制周期的TiAlSiN/Mo2N多层膜硬度均大于单层TiAlSiN和Mo2N薄膜,且TiAlSiN/Mo2N多层膜的硬度与弹性模量随调制周期的影响不大,硬度稳定在29 GPa左右,室温条件下,以Al2O3为摩擦副的TiAlSiN/Mo2N多层膜平均摩擦系数平均摩擦系数均低于单层TiAlSiN、Mo2N薄膜,且随调制周期的增大逐渐降低,其最低平均摩擦系数为0.42,对应调制周期为12 nm。  相似文献   

11.
用DC和RF磁控溅射法制备出了波长小于 10nm波段的Mo/B4 C软X射线多层膜反射镜。掠入射X射线衍射仪的测量结果表明 ,磁控溅射法有很高的控制精度 ,制备出的Mo/B4 C软X射线多层膜周期结构非常好 ,表 (界 )面粗糙度非常小 ,约为 0 4nm。  相似文献   

12.
SiC-W multilayer thin films with various modulation wavelengths were prepared by a magnetron sputtering system. Using low-angle x-ray diffraction (LXD), their interface microstructure and the modulation period were studied. The mechanical properties of these films were investigated using an ultramicrohardness (UMH) tester with loads smaller than 20 mN. It was shown that the UMH values of multilayer films varies with applied load L and modulation wavelength. When L was 5 mN, was 10 nm, the UMH reached a maximum, 19.869 GPa, which was 1.02 times higher than that of the homogeneously mixed film. The anomalous peak effect of UMH varying with the modulation wavelength is discussed.  相似文献   

13.
Ultrathin Al films with different thicknesses were deposited on glass substrates by DC magnetron sputtering. The effects of film thickness on morphology and optical properties of the films were investigated in detail. When film thickness increases from 7.0 to 84.0 nm, the average grain size and surface roughness enlarges from 27.6 to 94.2 nm and from 0.25 to 1.87 nm, respectively. Below critical thickness of 28.0 nm, which is the thickness that Al films form continuous film, the optical properties vary significantly with thickness increasing and then tend to be stable. In the absorptance spectra, all films exhibit distinct broad peaks which can be attributed to the absorption due to the interband transition. The possible reasons for the shift in the peak position are due to the quantum size effects and internal stress in the ultrathin Al films.  相似文献   

14.
Nanocomposite ZrO2/Al2O3 (ZAO) films were deposited on Si by plasma-enhanced atomic layer deposition and the film characteristics including interfacial oxide formation, dielectric constant (k), and electrical breakdown strength were investigated without post-annealing process. In both the mixed and nano-laminated ZAO films, the thickness of the interfacial oxide layer (T(IL)) was considerably reduced compared to ZrO2 and Al2O3 films. The T(IL) was 0.8 nm in nano-composite films prepared at a mixing ratio (ZrO2:Al2O3) of 1:1. The breakdown strength and the leakage current level were greatly improved by adding Al2O3 as little as 7.9% compared to that of ZrO2 and were enhanced more with increasing content of Al2O3. The k of ZrO2 and mixed ZAO (Al2O3 7.9%) films were 20.0 and 16.5, respectively. These results indicate that the addition of Al2O3 to ZrO2 greatly improves the electrical properties with less cost of k compared to the addition of SiO2.  相似文献   

15.
In this study diamond-like carbon (DLC) films were deposited by a dual-mode (radio frequency/microwave) reactor. A mixture of hydrogen and methane was used for deposition of DLC films. The film structure, thickness, roughness, refractive index of the films and plasma elements were investigated as a function of the radio frequency (RF) and microwave (MW) power, gas ratio and substrate substance. It was shown that by increasing the H2 content, the refractive index grows to 2.63, the growth rate decreases to 10 (nm/min) and the surface roughness drops to 0.824 nm. Taking into consideration the RF power it was found that, as the power increases, the growth rate increases to 11.6 (nm/min), the variations of the refractive index and the roughness were continuously increasing, up to a certain limit of RF power. The Raman G-band peak position was less dependent on RF power for the glass substrate than that of the Si substrate and a converse tendency exists with increasing the hydrogen content. Adding MW plasma to the RF discharge (dual-mode) leads to an increase of the thickness and roughness of the films, which is attributed to the density enhancement of ions and radicals. Also, optical emission spectroscopy is used to study the plasma elements.  相似文献   

16.
不同工艺制备的ta-C和ta-C:N薄膜表面粗糙度研究   总被引:1,自引:0,他引:1  
采用FCVA工艺成功制备了ta-C薄膜,采用ECR-CVD工艺对部分ta-C薄膜试样进行氮等离子体处理,制备了ta-C:N薄膜.对两种薄膜的表面粗糙度与元素含量、沉积工艺参数之间的关系进行了研究.通过AFM对薄膜表面粗糙度进行了分析,通过XPS对薄膜的元素含量进行了分析.试验结果显示,沉积条件对薄膜厚度和元素含量具有明显的影响.对ta-C薄膜进行氮等离子体处理后,其表面粗糙度有一个明显的起伏变化.研究结果表明,氮能改变DLC薄膜表面的粗糙度.元素含量也随着薄膜的厚度变化而变化.  相似文献   

17.
In this paper, we study the influence of oxygen pressure on structural, optical and magnetic properties of pure ZnO films. The chemical compositions and thickness of the film were estimated by Rutherford backscattering spectrometry measurements. X-ray diffraction patterns show all the films are in single phase and preferred along (002) orientation. With an increase of oxygen pressure, grain growth and average root mean square roughness is found to be increased. It is found that the intensity of UV emission peak increases whereas visible emission peak decreases in intensity with an increase of oxygen pressure. From the magnetization measurements, it is observed that ZnO film grown without oxygen pressure shows an enhanced ferromagnetic behaviour than that of the films grown with oxygen pressure of 0.05 and 0.1 mbar.  相似文献   

18.
The surface roughness of thin films is an important parameter related to the sticking behaviour of surfaces in the manufacturing of microelectomechanical systems (MEMS). In this work, TiO2 films made by atomic layer deposition (ALD) with the TiCl4-H2O process were characterized for their growth, roughness and crystallinity as function of deposition temperature (110-300 degrees C), film thickness (up to approximately 100 nm) and substrate (thermal SiO2, RCA-cleaned Si, Al2O3). TiO2 films got rougher with increasing film thickness and to some extent with increasing deposition temperature. The substrate drastically influenced the crystallization behaviour of the film: for films of about 20 nm thickness, on thermal SiO2 and RCA-cleaned Si, anatase TiO2 crystal diameter was about 40 nm, while on Al2O3 surface the diameter was about a micrometer. The roughness could be controlled from 0.2 nm up to several nanometers, which makes the TiO2 films candidates for adhesion engineering in MEMS.  相似文献   

19.
An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.  相似文献   

20.
Woon Shin Law 《Thin solid films》2009,517(18):5425-9828
The effect of TiO2 film thickness and agglomerate size on the non-UV activated superhydrophilic wetting and antifogging characteristics of TiO2 films was investigated. Evidence from Atomic Force Microscopy analysis showed that surface roughness is the key parameter requiring control so as to retain the superhydrophilic wetting and antifogging behaviour of the synthesised films. Surface roughness can be tuned by simple manipulation of the multilayer assembly of TiO2 nanoparticles through varying the film thickness and agglomerate size. A film thickness of ~ 140 nm yielded the optimum roughness (root mean square = 23 nm) to give the best superhydrophilic wetting behaviour. Thicker films reduced the film roughness and were detrimental to their superhydrophilic wetting properties. Smaller agglomerate size was also found to be important in retaining film roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号