首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The liquid phase adsorption process was studied on nano-zeolite Ba-X for separating para-xylene from a feed mixture containing all C8 aromatics. Nano-zeolite Ba-X with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with barium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption and in situ Fourier transform infrared (FTIR) spectroscopy. The adsorption process was carried out in a breakthrough system at temperature range of 120–160 °C under 4–7 atm pressure. The influence of nano-zeolite water content on the separation process was studied. The optimization of adsorption process was also investigated by changing the operation conditions. The adsorption isotherm for all C8 aromatic isomers and also desorbents indicated the typical Langmuir type. The selectivity factor of adsorbent for para-xylene and the adsorption capacity at saturation of the different adsorbate samples with each component from C8 aromatic mixture were determined. It was observed that the selectivity of para-xylene increased by barium ion-exchange of cationic sites in nano-zeolite X and the adsorbent selectivity for para-xylene relative to each of meta-xylene, ortho-xylene and ethyl-benzene under the optimum conditions was found to be 7.191, 2.819 and 3.745, in the order given. It was also studied the influence of desorbent type on its selectivity for para-xylene compared to each isomer from the C8 aromatic mixture.  相似文献   

2.
Industrial adsorptive separation process for liquids is most successful when the involved species have very close boiling points, making distillation expensive or are thermally sensitive at convenient distillation temperatures. The adsorption process was studied for separating meta-xylene from a feed mixture containing all C8 aromatics on binder-free X and Y zeolites in the liquid phase. Zeolitic adsorbents with different SiO2/Al2O3 were synthesized by the hydrothermal method and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The adsorption process was carried out in a breakthrough system at temperature of 110–160 °C and pressure of 6–8 atm. The influence of adsorbent moisture content on the separation process was studied. The optimization of adsorption process was also investigated by the changing operation conditions. The isotherms for each isomer of C8 aromatics and the desorbent possess the adsorption characteristics of Langmuir type. The selectivity factor of meta-xylene and the saturation adsorption capacities of adsorbates were determined. It was observed that the selectivity of meta-xylene increased by sodium ion-exchanging of cationic sites in Y zeolite and the selectivity factor of meta-xylene/para-xylene, meta-xylene/ortho-xylene and meta-xylene/ethylbenzene in the optimum conditions was determined to be 2.62, 2.83 and 5.93, respectively.  相似文献   

3.
This paper is a study to solve the practical problem of comparing two catalysts experimentally. The process under discussion is the isomenzation of aromalics of C8 in non-equilibrium mixtures lo near equilibrium concentrations to allow a greater yield in the production of ortho- and para-xylene. To define the zone of work of each catalyst, the experimental strategy used was the Response Surface Methodology. The catalytic parameters studied were the activity, and selectivity through the analysis of the operating variables influence, the reaction products and the building of empirical models.  相似文献   

4.
Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.  相似文献   

5.
本文以连续流动单管实验装置,研究了C_8芳烃的单溶质在二乙苯溶液中的液相吸附动力学性质.测定了在170℃下对二甲苯、邻二甲苯、乙苯在二乙苯溶液中各系统的穿透曲线.根据穿透曲线以及有关的参数,分析和计算了在二乙苯溶液中C_8芳烃吸附的一些性质.并且研究和确定了本系统的吸附控制机理.  相似文献   

6.
Synthetic resin Dowex 1X8 was functionalized with α-Nitroso β-Naphthol (Dowex-αNβN) and with 8-Hydroxy Quinoline (Dowex-8HQ) to form chelating resin. The resultant chelating resins were characterized using scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The efficiency of these resins for the removal/preconcentration of Pb (II) from aqueous samples was evaluated. Optimum conditions of pH, time of equilibrium, and sample volume were investigated for maximum retention of Pb (II) from aqueous solutions. At optimum conditions, 100% adsorption was observed for the functionalized resins. Both Freundlich and Langmuir isotherms were applied to the adsorption data and it was observed that data fits well to Langmuir isotherm. Various parameters such as shaking time, type, and concentration of eluents were investigated for the recovery of Pb (II) from the chelating resins. For Dowex-αNβN and Dowex-8HQ, 100% recovery with a preconcentration factor of 100 was achieved with 0.5 and 2 M HCl, respectively. The selectivity and specificity of the functionalized resins was also evaluated by studying the effect of various foreign ions and the results have been compared with the unmodified Dowex.  相似文献   

7.
The applicability of erbium–metal–organic framework (Er-MOF) in the adsorption and removal of methylene blue from aqueous solution has been studied. Er-MOF was synthesized by hydrothermal method and characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray powder diffraction. The high thermal stability, water stability and accessible nano-sized aperture for the Er-MOF could endow it with a very high potential in adsorption of dye pollutant. The adsorption isotherm, kinetic and thermodynamic investigations confirm that the adsorption behavior is based on Langmuir isotherm with an exothermic mechanism and enthalpy-driven process. The speed adsorption process (30 min), low cost, high efficiency, big surface area, selectivity and very high and rapid reusability are the main advantages of the proposed compound as a sorbent.  相似文献   

8.
A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions.  相似文献   

9.
Molecularly imprinted polymer (MIP) for Rutin had been prepared through solution polymerization by redox initiation. The effects of monomers, crosslinker, initiators, polymerization time, and temperature on adsorption selectivity for Rutin were investigated and optimized. The structure and surface morphology of MIP were evaluated by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The synthesized MIP under the optimal conditions showed a specific recognition of Rutin from the mixture of Rutin and Isorhamnetin. And the maximal separation degree of Rutin was 5.0. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Molecular imprinting method is widely used to recognize various templates. Recognition of bisphenol A (BPA) as a harmful template is important. Herein a novel BPA molecular imprinted polymer nanoparticles (BMIPN) is reported by core-shell surface molecular imprinting technology. In this process, BPA was imprinted by polymerizing methacrylic acid (MAA) as functional monomer, in presence of ethylene glycol dimethacrylate (EGDMA) as a cross-linker and goethite nanorods (GNR) functionalized with fumaric acid. The formation of different materials in different steps was confirmed by Fourier transform infrared spectroscopy (FT-IR), the size and surface morphological of material was observed by field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM). The BMIPN structure was characterized by X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The important effective factors on adsorption process such as pH, contact time, amount of GNR, initial concentration of BPA, release and reusability and selectivity of BMIPN were studied. The excellent selectivity behavior of BMIPN was evaluated in the presence of phenol (Ph), 4, 4′-biphenol (BPh), hydroquinone (HQ) and 2, 2′-Bis(4-hydroxyphenyl)butane (BPB), as interferences. Based on the isotherm and kinetic studies, the experimental data obey Langmuir isotherm and the pseudo-second-order kinetic models. The results showed that BMIPN had excellent properties for adsorbing BPA in a short time even in the presence of analogous.  相似文献   

11.
A Fe(III) ion‐imprinted silica gel polymer functionalized with phosphonic acid groups (IIP‐PA/SiO2) was prepared with surface imprinting technique by using Fe(III) ion as template ion, grafted silica gel as support, and vinylphosphonic acid as functional monomer. The polymer was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller, and thermogravimetric analysis. The synthesized imprinted silica gel polymer was used as a sorbent for Fe(III) adsorption. The adsorption properties, such as the effect of solution pH, adsorption kinetic, adsorption isotherm, adsorption selectivity as well as the regeneration of sorbent were studied. The results showd that the prepared sorbent (IIP‐PA/SiO2) had a short adsorption equilibrium time (12 min) and high adsorption capacity (29.92 mg g?1) for Fe(III) at the optimal pH of 2.0. The selectivity coefficients of the sorbent for Fe(III) in presence of Cr(III), Mn (II), and Zn(II) were 51.76, 27.86, and 207. 76, respectively. Moreover, the adsorption capacity of the prepared sorbent did not decrease significantly after six repeated use. Thus, the prepared ion‐imprinted silica gel polymer was a promising candidate sorbent for the selective adsorption of Fe(III) from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45165.  相似文献   

12.
This work reports a study of the adsorption of fibrinogen (Fgn) onto the surface of semi‐interpenetrating polymer networks (IPNs) of poly(ethylene glycol) (PEG) and poly(2‐hydroxyethyl methacrylate) (PHEMA). The semi‐IPNs were prepared by polymerizing 2‐hydroxyethyl methacrylate with a redox system and in the presence of PEG and crosslinker ethyleneglycol dimethacrylate. The proposed spongy IPNs were characterized by Fourier transform infrared and environmental scanning electron microscopy methods, and network structural parameters, such as molecular weight between crosslinks and crosslink density, were calculated using swelling measurements. The adsorption of Fgn was carried out onto the spongy IPNs and kinetic constants of the adsorption process as well as isotherm constants were evaluated. The adsorption process was also studied under varying pH, ionic strengths, and chemical architecture of the IPNs. The anti‐thrombogenic behaviour of the polymer matrices was judged using in vitro tests. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
A semi‐interpenetrating network system [(GG‐g‐PAAm)‐PVA] was made by microwave irradiation of aqueous mixture of gellan gum (GG), acrylamide (AAm), and poly(vinyl alcohol) (PVA) containing N,N′‐methylene‐bis‐acrylamide as crosslinking agent. The gel was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, and scanning electron microscopy techniques. The swelling behavior was studied under different pH conditions. A pH‐dependent swelling with maximum swelling under neutral pH was observed. The swelling process is found to follow second‐order kinetics and the mechanism of water transport is found to be Fickian type of diffusion. The (GG‐g‐PAAm)‐PVA was evaluated for removal of dye from aqueous solution, using crystal violet, a cationic dye. The maximum adsorption capacity of the gel was found to be 45.45 mg/g. The kinetic studies revealed a second‐order adsorption process which fits well into Langmuir model. The evaluation of thermodynamic parameters indicated the adsorption process to be exothermic and spontaneous at lower temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45527.  相似文献   

14.
本文采用溶胶-凝胶法由自制的纳米分子筛和氧化铝制备纳米分子筛/Al2O3复合材料,做了制备纳米分子筛/Al2O3复合材料条件实验(如Al2O3凝胶浓度、煅烧温度、纳米分子筛和Al2O3配比等)。纳米分子筛/Al2O3复合材料进行了傅利叶变换红外光谱(FTIR)、X射线衍射仪(XRD)结构表征。测试了纳米分子筛/Al2O3复合材料的吸水率和吸油性,得出最佳吸水性和吸油性的制备条件。  相似文献   

15.
Ordered mesoporous CMK-3 carbon replicas were synthesized by infiltration of mesopores present in a SBA-15 silica template with two different carbon precursors, i.e. sucrose and poly(furfuryl alcohol). The obtained composites were carbonized under an inert gas atmosphere at 550, 650, 750 and 850?°C, and the template was etched with a HF solution. The final carbon replicas were analyzed by various physicochemical techniques, including low-temperature N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and tested as catalysts in the oxidative dehydrogenation of propane (ODP) at 450?°C. Both series of materials differed strongly with respect to their porosity, but showed very similar surface composition determined by XPS. Higher porosity of CMK-3 prepared using the sucrose precursor influenced propane conversion and selectivity to propene. Furthermore, oxygen containing groups (e.g. carbonyl-type) were found to be less sensitive to the type of carbon precursor than to the ODP reaction conditions.  相似文献   

16.
Inverse emulsion polymerization was employed to synthesize inverse emulsion Cd(II) imprinted polymers(IEII P). The morphology and functional groups of IEIIP were characterized by SEM,FTIR and TG. Static adsorption experiments and competitive adsorption test were used to evaluate the adsorption ability of IEIIP. The adsorption capacity of polymers could reach 86.7 mg·g~(-1) under the optimal adsorption conditions. The pseudo second order kinetic model and Langmuir isotherm model could be used to analyze the experimental data well. The adsorption process of IEIIP was chemical adsorption process and monomolecular type. Thermodynamic parameters showed that the adsorption process was endothermic and could occur spontaneously. The selectivity coefficients k of Cd~(2+)/Pb~(2+), Cd~(2+)/Zn~(2+) and Cd~(2+)/Cu~(2+) were 2.4998, 1.2437 and 4.6882, respectively. The proposed method provides a new thought for removing Cd(II) in water samples.  相似文献   

17.
《分离科学与技术》2012,47(3):456-470
ABSTRACT

We present a way of synthesizing nanocomposite Fe3O4@SiO2@CTAB–SiO2 by employing simple sol–gel technique with selective etching for extreme selectivity adsorption of cyclophosphamide (CP). The transmission electron microscopy (TEM); scanning electron microscopy (SEM); X-ray diffraction (XRD); Fourier transform infrared (FT-IR); vibrating sample magnetometer (VSM); pHPZC; and Brunauer, Emmett and Teller (BET) techniques were used for nanocomposite characterization. These nanoparticles have an SBET of 157.8 m2 g?1 and a high saturation magnetization of 67.5 emu g?1. First, the adsorption system was examined as a function of contact time under various initial CP contents, ionic strength, initial solution pH, adsorbent dose and temperature in batch test. The optimum dose, pH and contact time were obtained to be 0.01 g, 7.0 and 30 min, respectively. Ultimately, experimental isotherm and kinetics data of adsorption of CP onto nanocomposite Fe3O4@SiO2@CTAB–SiO2 were fitted to classical models. Additionally, it was found that the maximum adsorption process capacity of CP on adsorbent was 342.8 mg g?1.  相似文献   

18.
Tuffite has been studied for Cu(II) adsorption from aqueous and ammoniacal solutions. Tuffite was characterized by mercury porosimetry, Brunnauer–Emmet–Teller (BET), scanning electron microscopy–energy X-ray dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectra (FTIR), X-ray powder diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-OES) and petrographic microscopy. The equilibrium time was 50 min. The second-order model is the best model to describe the process. It was determined that the intraparticle diffusion was not the only limited step. Process variables were studied to improve the adsorption process. The material washed contributes to increase the Cu(II) adsorption from 213.05 to 276 mg/g. The flow countercurrent system requires at least 6 g of tuffite to achieve 90% of removal.  相似文献   

19.
A new kind of corrosion inhibitor (LOBI) based on linseed oil has been synthesized. The molecular structure of LOBI was investigated using Fourier transform infrared spectroscopy and nuclear magnetic resonance spectrometer. Its inhibiting behavior on mild steel in 1.0 M HCl was studied by electrochemical potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. Results reveal that LOBI was a good mixed-type inhibitor. The adsorption of LOBI at 40 °C obeys the Langmuir adsorption isotherm. The N(1s) and S(2p) peaks of XPS measurement indicate that LOBI has been adsorbed onto a Q235 steel surface. The adsorption equilibrium constant, adsorption free energy and activation energy were also calculated, which indicated the adsorption of LOBI was chemisorption.  相似文献   

20.
The ethylbenzene separation from mixed xylene is one of the critical issues in the chemical industry. In this study, separation of ethylbenzene from ternary xylene mixtures system [ethylbenzene (EB), para-xylene (PX) and meta-xylene (MX)] was performed using a nano-zeolite coated tubular membrane system. Nano-zeolite membranes with different Si/Al ratios (Si/Al = 30, 100 and ∞) were prepared by a microwave hydrothermal method and the separation performance was compared. MFI-type nano-zeolite membranes were synthesized on alumina tubes from the randomly oriented seed layers by dip coating and functional coating using 3-chloropropyltrimethoxysilane, respectively. After the microwave-assisted secondary growth, it was observed that thinner layers of nano-zeolites were prepared by functional coating (3–4 μm) compared to the typical dip coating (6–8 μm). Ethylbenzene separation tests were performed using a comparatively high EB-containing ternary mixture feed (EB/PX/MX = 80/5/15 molar ratio). The silicalite-1 (Si/Al ratio = ∞) membrane with a functional layer shows the best ethylbenzene separation factor of 3.11 from the high EB-containing ternary mixture feed (ethylbenzene flux: 1,010.6 mol/m2 s Pa ×10?10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号