首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a single-chip mixed-signal IC for a hearing aid system. The IC consumes 270 /spl mu/A of supply current at a 1.1-V battery voltage. The presented circuit and architectural design techniques reduce the total IC power to 297 /spl mu/W, a level where up to 70 days of lifetime is achieved at 10 h/day for a small zinc-air battery. The measured input referred noise for the entire channel is 2.8 /spl mu/Vrms and the average THD in the nominal operating region is 0.02%. The jitter for the on-board ring oscillator is 147 ps rms. The chip area is 12 mm/sup 2/ in a 0.6-/spl mu/m 3.3-V mixed-signal CMOS process.  相似文献   

2.
A second-order multibit bandpass /spl Sigma//spl Delta/ modulator (BP/spl Sigma//spl Delta/M) used for the digitizing of AM/FM radio broadcasting signals at a 10.7-MHz IF is presented. The BP/spl Sigma//spl Delta/M is realized with switched-capacitor (SC) techniques and operates with a sampling frequency of 37.05 MHz. The input impulse current, required by the SC input branch, is minimized by the use of a switched buffer without deteriorating the overall system performance. The accuracy of the in-band noise shaping is ensured with two self-calibrating control systems. In a 0.18-/spl mu/m CMOS technology, the device die size is 1 mm/sup 2/ and the power consumption is 88 mW. In production, the BP/spl Sigma//spl Delta/M features at least 78-dB dynamic range and 72-dB peak SNR within a 200-kHz bandwidth (FM bandwidth). The intermodulation (IMD) is -65 dBc for two tones at -11 dBFS. The robustness of the aforementioned performance is demonstrated by the fact that it has been realized with the BP/spl Sigma//spl Delta/M embedded in the noisy on-chip environment of a complete mixed-signal FM receiver.  相似文献   

3.
Results from silicon-on-insulator (SOI) MESFETs designed for subthreshold operation are presented. The transistors have subthreshold slopes as low as 78 mV/dec and off-state drain currents approaching 1 pA//spl mu/m. Drain current saturation can be achieved with drain voltages of less than 0.5 V and with output impedance>100 M/spl Omega//spl middot//spl mu/m. The cutoff frequency of a 500-nm gate length device exceeds 1 GHz at currents significantly less than 1 /spl mu/A//spl mu/m. These results suggest that subthreshold SOI MESFETs might have useful applications in mixed-signal, micropower circuit design.  相似文献   

4.
Presented is a mixed-signal full-custom VLSI chip designed to receive sonar return signals from an ultrasonic microphone array, and extract input bearing angles of the incoming signals. Processing utilizes simple low-power analog spatiotemporal bandpass filters to extract wavefront velocity across the array, which translates to input bearing angle. Processing uses phase information of array signals, not onset or offset of ultrasonic burst. With such synchronous processing, multiple angle readings from different returns of the same ultrasonic transmit burst are possible. Compatible microphone arrays are compact in size-test array has a total baseline of 26.5 mm. In a test with ultrasonic beacon 65 cm from a microphone array, angular precision of 1/spl deg/ was demonstrated in most instances in the range -60/spl deg/ to 60/spl deg/. Applications include sonar localization of remote objects, sonar imaging, and improved interference rejection between objects within the field of view of the sensor microphones. The chip was fabricated on a standard 3M2P CMOS process with a 0.5-/spl mu/m feature size.  相似文献   

5.
A single-chip speech processor/stimulator is presented for use in a totally implanted cochlear prosthesis system. It implements a continuous interleaved sampling (CIS) strategy. By combining the speech processor and the stimulator into one mixed-signal chip, both size and power are reduced sufficiently, so as to make a totally implanted system feasible. First silicon has been validated and typically operates at 126 /spl mu/W (excluding cochlear stimulation currents).  相似文献   

6.
A discrete-time mixed-signal Gaussian frequency-shift keying demodulator designed for a low intermediate frequency Bluetooth receiver performs FSK demodulation. Employing passive sampling and time-domain differentiation techniques, the demodulator performs quadrature demodulation while tolerating up to 200-kHz frequency offset. A distributed array of interleaved sampling circuits and a low-voltage multiplier allow both low-voltage operation and low power dissipation. Fabricated in a CMOS 0.25-/spl mu/m technology, the demodulator only dissipates 6 mW from a 2-V power supply.  相似文献   

7.
This paper describes the design, realization, and evaluation of a mixed-signal motion estimation processor using the full-search block-matching algorithm. The approach features digital I/O and a low-power, compact analog computational core. The proof-of-concept realization whose architecture incorporates pixel reuse, was fabricated in 0.8-/spl mu/m CMOS technology occupying 0.65 mm/sup 2/, and operates on 4 /spl times/ 4 pixel blocks and a search area of 8 /spl times/ 8 pixels. The processor achieves a low energy consumption per motion vector of 1.35 nJ and dissipates 0.8 mW from a 3-V power supply at QCIF 15 frames/s. The approach is intended for portable applications of digital video encoding.  相似文献   

8.
GaAs photoconductive switches have been integrated with two parallel 4-bit CMOS analog-to-digital (A/D) converter channels to demonstrate the time-interleaved sampling of wideband signals. The picosecond sampling aperture provided by low-temperature-grown-GaAs metal-semiconductor-metal switches, in combination with low-jitter short-pulse lasers, enables the optically-triggered sampling of electrical signals with tens of gigahertz bandwidth at low to medium resolution. A pair of parallel sampling paths, one for sampling and the second for feedthrough cancellation, generate a differential held signal that is quantized by a low-input capacitance, high-speed flash A/D converter. Dynamic offset averaging is employed to improve converter linearity. An experimental time-interleaved two-channel A/D converter provides about 3.5 effective bits of resolution for inputs up to 40 GHz when tested at an optically-triggered sampling rate of 160 MHz. The sampling rate was limited by the available optical source. Each A/D converter channel operates up to a 640-MHz conversion rate, dissipates 70 mW of power, and occupies an area of 150 /spl mu/m /spl times/ 450 /spl mu/m in a 2.5-V, 0.25-/spl mu/m CMOS technology.  相似文献   

9.
Integrated microsystems merging embedded computing with sensing and actuation are poised to dramatically expand our ability to gather information from the nonelectronic world. Examples include a microassembled multichip electronic interface to the brain, an integrated electrofluidic gas chromatography system for environmental monitoring, and a wireless intra-arterial microsystem for pressure and flow measurements. In general, such microsystems will consist of a few chips, integrated in generic platforms that are customized for a given application by the sensors selected and by software. This paper illustrates this approach with a 0.15-cm/sup 3/ multisensor microsystem for autonomously sensing and storing environmental and biological data. The microsystem is formed using on-board pressure/temperature/humidity sensors, off-board strain gauges and neural/EMG electrodes, a custom sensor-interface chip, a mixed-signal microcontroller, and a nonvolatile memory. These components allow the acquisition and storage of multidomain data at low power levels (< 50 /spl mu/W reading capacitive sensors at 1 Hz). The system is programmable in gain (0.4-3.2 mV/fF), offset (10b), accuracy (14b), and sampling rate (0.1 Hz-10 kHz) and is integrated in a micromachined silicon platform that implements through-wafer interconnects, solder-based microconnectors, and recessed cavities for chip-stacking. The microsystem is realized in 9.5 mm/spl times/7.6 mm/spl times/2.0 mm (0.15 cm/sup 3/) (< 0.5 cm/sup 3/ with a lithium battery).  相似文献   

10.
This paper describes a fully integrated single-chip CMOS mixed-signal system on a chip (SoC) for DVD player applications. It integrates one digital signal processor (DSP), two 32-bit CPUs, three dedicated processing units, a partial response maximum likelihood (PRML) read channel with an analog front end (AFE), and many other subsystems on the same die. The AFE includes a fifth-order G/sub m/-C filter and attains over 66 dB C/N overall. PR(3,4,4,3) structure is employed in the PRML read channel. Owing to the PRML signal processing and the mixed-signal system level optimization in the PRML read channel, less than 10/sup -6/ of bit-error rate (BER) is obtained for the focus offset margins over /spl plusmn/0.5 /spl mu/m. This SoC is fabricated in 0.13-/spl mu/m one-poly six-Cu CMOS technology. It contains 24 million transistors in a 63.87 mm/sup 2/ die and consumes 1.5 W at 40 MSample/s data rate, which corresponds to DVD 1.5 times playback operation mode.  相似文献   

11.
A CMOS low-power mixed-signal clock and data recovery circuit is presented in this paper. It is designed for OIF CEI-6G+ LR backplane transceiver, and consists of a phase detector, loop filter, phase control logic, and phase interpolator. A unique subsampled architecture makes it possible for a low-power mixed-signal clock recovery loop running at a rate of 6 Gb/s. The proposed architecture has data pattern independent loop bandwidth. Fabricated in a 0.13-/spl mu/m CMOS technology in an area of 280/spl times/100 /spl mu/m/sup 2/, the clock and data recovery loop exhibits a frequency tracking range up to 2000 ppm. The bit error rate is less than 10/sup -12/ with a pseudorandom bit sequence of length 2/sup 31/-1. The power dissipation is 24 mW for clock and data recovery circuits from a single 1.2-V supply.  相似文献   

12.
A 1.8-V 15-bit 40-MSample/s CMOS pipelined analog-to-digital converter with 90-dB spurious-free dynamic range (SFDR) and 72-dB peak signal-to-noise ratio (SNR) over the full Nyquist band is presented. Its differential and integral nonlinearities are 0.25 LSB and 1.5 LSB, respectively, and its power consumption is 400 mW. This performance is enabled by digital background calibration of internal digital-to-analog converter (DAC) noise and interstage gain errors. The calibration achieves improvements of better than 12 dB in signal-to-noise plus distortion ratio and 20 dB in SFDR relative to the case where calibration is disabled. Other enabling features of the prototype integrated circuit (IC) include a low-latency, segmented, dynamic element-matching DAC, distributed passive input signal sampling, and asymmetric clocking to maximize the time available for the first-stage residue amplifier to settle. The IC is realized in a 0.18-/spl mu/m mixed-signal CMOS process and has a die size of 4mm/spl times/5 mm.  相似文献   

13.
A switched-capacitor instrumentation amplifier which uses correlated-double sampling to reduce the amplifier offset is discussed. Additional offset caused by clock-related charge injection is cancelled by a symmetrical differential circuit topology and a three-phase clocking scheme. An experimental low-power test cell has been integrated, showing 100 /spl mu/V equivalent offset voltage and input noise equal to 270 /spl mu/V. For a fixed gain equal to 10- and 9-kHz sampling frequency, the power dissipation is 36 /spl mu/W (power supply: 5 V); the circuit measures only 0.2 mm/SUP 2/.  相似文献   

14.
This paper reports a high-sensitivity low-noise capacitive accelerometer system with one micro-g//spl radic/Hz resolution. The accelerometer and interface electronics together operate as a second-order electromechanical sigma-delta modulator. A detailed noise analysis of electromechanical sigma-delta capacitive accelerometers with a final goal of achieving sub-/spl mu/g resolution is also presented. The analysis and test results have shown that amplifier thermal and sensor charging reference voltage noises are dominant in open-loop mode of operation. For closed-loop mode of operation, mass-residual motion is the dominant noise source at low sampling frequencies. By increasing the sampling frequency, both open-loop and closed-loop overall noise can be reduced significantly. The interface circuit has more than 120 dB dynamic range and can resolve better than 10 aF. The complete module operates from a single 5-V supply and has a measured sensitivity of 960 mV/g with a noise floor of 1.08 /spl mu/g//spl radic/Hz in open-loop. This system can resolve better than 10 /spl mu/g//spl radic/Hz in closed-loop.  相似文献   

15.
A self-calibrating analog-to-digital converter using binary weighted capacitors and resistor strings is described. Linearity errors are corrected by a simple digital algorithm. A folded cascode CMOS comparator resolves 30 /spl mu/V in 3 /spl mu/s. An experimental converter fabricated using a 6-/spl mu/m-gate CMOS process demonstrates 15-bit resolution and linearity at a 12-kHz sampling rate.  相似文献   

16.
An oversampling bandpass digital-to-analog converter has been designed so as to eliminate the carrier leak and in-band SNR degradation that accompany I and Q channel mismatch in wireless transmitters. The converter combines a cascaded noise-shaping sigma-delta (/spl Sigma//spl Delta/) modulator with digital finite impulse response (FIR) and mixed-signal semi-digital filters that attenuate out-of-band quantization noise. The performance of the converter in the presence of current source mismatch has been improved through the use of bandpass data weighted averaging. An experimental prototype of the converter, integrated in a 0.25-/spl mu/m CMOS technology, provides 83 dB of dynamic range for a 6.25-MHz signal band centered at 50 MHz, and suppresses out-of-band quantization noise by 38 dB.  相似文献   

17.
Gigabit Ethernet switches using a shared buffer architecture   总被引:1,自引:0,他引:1  
Gigabit Ethernet networks have seen great demand in recent years. This growth was fueled by both an increase in port speed at the client side and new applications in MAN and WAN space. In this article, we report a highly integrated Ethernet switch IC design that supports 12 gigabit ports and one 10 Gb port. All packet memory and search memory are integrated on chip. A deeply pipelined structure with parallel memory access is employed to achieve wirespeed search performance. A flexible policy engine is designed to allow packet filtering and modification. A novel tail buffer architecture is proposed to address the variable packet length issue in the shared buffer architecture. Custom mixed-signal circuits are incorporated to implement the 10G Ethernet interface in XGMII. The chip integrates 70 million transistors in a 16 mm /spl times/ 15 mm die using 0.18 /spl mu/m CMOS technology. The chip has been tested to verify the wirespeed searching and switching performance.  相似文献   

18.
A new multifunction millimeter-wave sensor operating at 35.6 GHz has been developed and demonstrated for measurement of displacement and low velocity. The sensor was realized using microwave integrated circuits and monolithic microwave integrated circuits. Measured displacement results show unprecedented resolution of only 10 /spl mu/m, which is approximately equivalent to /spl lambda//sub 0//840 in terms of free-space wavelength /spl lambda//sub 0/, and maximum error of only 27 /spl mu/m. A polynomial curve-fitting method was also developed for correcting the error. Results indicate that multiple reflections dominate the displacement measurement error. The sensor was able to measure speed as low as 27.7 mm/s, corresponding to 6.6 Hz in Doppler frequency, with an estimated velocity resolution of 2.7 mm/s. A digital quadrature mixer (DQM) was configured as a phase-detecting processor, employing a quadrature sampling signal-processing technique, to overcome the nonlinear phase response problem of a conventional analog quadrature mixer. The DQM also enables low Doppler frequency to be measured with high resolution. The Doppler frequency was determined by applying linear regression on the phase sampled within only fractions of the period of the Doppler frequency. Short-term stability of the microwave signal source was also considered to predict its effect on measurement accuracy.  相似文献   

19.
The effect of SiN surface passivation by catalytic chemical vapor deposition (Cat-CVD) on Al/sub 0.4/Ga/sub 0.6/N-GaN heterostructure field-effect transistors (HFETs) was investigated. The channel sheet resistance was reduced by the passivation due to an increase in electron density, and the device characteristics of the thin-barrier HFETs were significantly improved by the reduction of source and drain resistances. The AlGaN(8 nm)-AlN(1.3 nm)-GaN HFET device with a source/drain distance of 3 /spl mu/m and a gate length of 1 /spl mu/m had a maximum drain current density of 0.83 A/mm at a gate bias of +1.5 V and an extrinsic maximum transconductance of 403 mS/mm. These results indicate the substantial potential of Cat-CVD SiN-passivated AlGaN-GaN HFETs with thin and high Al composition barrier layers.  相似文献   

20.
We have built a 48-tap, mixed-signal adaptive FIR filter with 8-bit digital input and an analog output with 10 bits of resolution. The filter stores its tap weights in nonvolatile analog memory cells using synapse transistors, and adapts using the least mean square (LMS) algorithm. We run the input through a digital tapped delay line, multiply the digital words with the analog tap weights using mixed-signal multipliers, and adapt the tap coefficients using pulse-based feedback. The accuracy of the weight updates exceeds 13 bits. The total die area is 2.6 mm/sup 2/ in a 0.35-/spl mu/m CMOS process. The filter delivers a performance of 19.2 GOPS at 200 MHz, and consumes 20 mW providing a 6-mA differential output current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号