首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano grained AZ31 alloy achieved by equal channel angular rolling process   总被引:1,自引:0,他引:1  
Equal channel angular rolling (ECAR) is a severe plastic deformation process which is carried out on large, thin sheets. The grain size could be significantly decreased by this process. The main purpose of this study is to investigate the possibility of grain refinement of AZ31 magnesium alloy sheet by this process to nanometer. The effect of the number of ECAR passes on texture evolution of AZ31 magnesium alloy was investigated. ECAR temperature was controlled to maximize the grain refinement efficiency along with preventing cracking. The initial microstructure of as-received AZ31 sheet showed an average grain size of about 21 μm. The amount of grain refinement increased with increasing the pass number. After 10 passes of the process, significant grain refinement occurred and the field emission scanning electron microscopic (FESEM) micrographs showed that the size of grains were decreased significantly to about 14-70 nm. These grains were formed at the grain boundaries and inside some of the previous larger micrometer grains. Observation of optical microstructures and X-ray diffraction patterns (XRD) showed the formation of twins after ECAR process. Micro-hardness of material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of ECAR process. At the 8th pass, hardness values increased by 53%. At final passes hardness reduced slightly, which was attributed to saturation of strain in high number of passes.  相似文献   

2.
A severe plastic deformation (SPD) technique based on tubular channel angular pressing (TCAP) is proposed suitable for deforming cylindrical tubes to extremely large strains without changing their dimensions. The tube constrained by inner and outer dies is pressed by a hollow cylindrical punch into a tubular angular channel with three shear zones. This technique was applied to a commercial AZ91 magnesium alloy and a significant grain refinement was achieved even after single cycle TCAP. Microhardness of the tube increased to 78 Hv from an initial value of 51 Hv. This new SPD process is promising for future industrial applications.  相似文献   

3.
AZ31 magnesium alloy sheets were processed by normal rolling (NR), one-pass equal channel angular rolling (1P-ECAR), and cross equal channel angular rolling (C-ECAR) at 400 °C on a die with 105 ° channel angle. The microstructure, texture, and tensile properties of sheets were measured. The results show that ECAR processing can weaken the basal plane texture, thus obviously improve the mechanical properties. The yield ratio σsb decreases and strain hardening exponent n increases along rolling direction (RD) during ECAR, which means that the uniform plastic formability is enhanced. After C-ECAR, the mechanical properties along both the RD and transverse direction (TD) are improved. Different twinning types, fine contraction twinning in the NRed sheets and coarse extension twinning in the ECARed sheets, were observed. The easier activation of twinning and basal 〈a〉 slip leads to the lower yield strength of the ECARed sheets. Dynamic recrystallization (DRX) during the rolling process has great effect on the microstructure of the as-deformed and annealed sheets. The annealed C-ECARed sheets have significant finer and homogenous grains than the annealed NRed sheets, which is attributed to the rarely DRX process during ECAR. The average grain sizes of the annealed C-ECARed samples and NRed samples are 14 and 24 μm, respectively.  相似文献   

4.
The microstructure evolution and tensile properties of ZK60 magnesium alloy after equal channel angular pressing (ECAP) have been investigated. The results show that the two-step ECAP process is more effective in grain refinement than the single-step ECAP process due to the lower deformation temperature, a mean grain size of ~0.8 μm was obtained after two-step ECAP process at 513 K for four passes and 453 K for four passes. The EBSD examination reveals that ZK60 alloy after two-step ECAP process exhibits a more homogeneous grain size and misorientation distribution than single-step ECAP process. Both alloys after ECAP process present similar strong {0002} texture. The tensile strength of two-step ECAP alloy has also been improved compared with the single-step ECAP alloy. The strengthening effect was mainly ascribed to grain refinement.  相似文献   

5.
Equal channel angular pressing (ECAP) was performed on the extruded commercial pure magnesium at 250 °C for 4 passes. Heat treatments were carried out to modify the microstructures. The cyclic plastic deformation behavior of pure Mg with different grain sizes in microstrain region was studied by tensile loading and unloading experiments. The microplastic deformation process of pure Mg can be divided into two stages. In the first stage, pronounced plastic deformation associated with dislocation motion on basal plane is initiated at several MPa. The materials are softened and characterized by low friction stresses and hardening exponents. The microplastic deformation enters into region II above the strain of about 8 × 10?4. Annihilation and tangle of dislocations lead to the increase of hardening exponents and friction stresses. Pure Mg shows a very pronounced anelastic behavior during cyclic microplastic deformation, which results in a rapid increase of modulus defect, effectively decreasing the elastic modulus by up to 60 %. Grain size has a marked effect on microplastic deformation behavior of pure Mg. With increasing the grain size, the specimen shows a more pronounced microstrain and anelastic behavior.  相似文献   

6.
Analysis of the recently proposed equal channel angular bending(ECAB)process is provided on thin hotrolled AZ31 magnesium alloy sheets.In particular,effects of deformation temperature and strain path on the texture evolution and mechanical properties are systematically investigated under single pass ECAB at various temperatures and multi-pass ECAB process that involves changes in strain paths.It is found that simultaneous activation of multiple twinning types is successfully introduced during ECAB,which results in obvious tilted component of basal texture.Attributed to the domination of extension twins,weaker basal textures are detected after both single pass ECAB at 150℃and three cross passes ECAB at 200℃.After annealing,the basal texture is further weakened via twin-related recrystallization and the annealed microstructure is featured with mixture of basal and non-basal orientated grains.Additionally,the effect of grain orientation on the mode of plastic deformation and the roles of grain orientation and grain boundary on the local strain accommodation are coherently studied.This study reveals that over 60%increase of uniform elongation with marginal reduction of tensile strength less than 5%can be achieved for single pass ECAB at 150℃and three cross passes ECAB at 200℃,which is the result of larger fraction of grains favored with extension twinning and better local strain accommodation.  相似文献   

7.
Abstract

Magnesium is a biocompatible and biodegradable metal, which has attracted much interest in biomedical engineering. Pure magnesium shows the low strength and plasticity at ambient temperature. Microstructure, mechanical properties and degradation properties of the equal channel angular pressed pure magnesium have been investigated for biomedical application in detail by optical microscopes, mechanical properties testing and corrosion testing. The results have revealed that the processing temperature and routes are important factors that affect the properties of pure Mg by equal channel angular pressing. The two-step equal channel angular pressing processing (one pass at 360°C and three passes at 200°C) has been successfully applied to control the microstructure, mechanical and degradation properties of the pure Mg. Optical microscopy observation has indicated that the grain size of the as cast pure magnesium has been significantly decreased after equal channel angular extrusion, which has mainly contributed to the high tensile strength and good elongation. Equal channel angular pressed pure magnesium has provided moderate corrosion resistance, which has opened a new window for materials design, especially for biomedical.  相似文献   

8.
Equal‐channel angular rolling (ECAR) is a continuous severe plastic deformation process. In this process, severe shear strains apply to the sheet. This strain increases the yield or ultimate strength of sheet without significant change in sheet dimension. In this paper, the effect of ECAR process on mechanical properties and fatigue life of manufactured sheets will be studied. Four AA5083 samples have been prepared and annealed for obtaining stress‐free samples. Three samples have been rolled by the ECAR process with one, two and three passes of rolling, respectively. Mechanical tests including tensile test, hardness and axial fatigue tests have been carried out on prepared samples. Fatigue tests have been implemented according to a strain‐based approach with a constant strain ratio equal to 0.75 and 0.5 Hz frequency of loading. All of the tests have been carried out in controlled laboratory conditions. Results show that the ultimate tensile strength of samples increases with increasing the pass of rolling. Also, the maximum elongation of samples decreases. Maximum elongation was 17% in annealed samples, while it decreases to 10% in samples with three passes of rolling. The hardness of samples has been measured, and the results show an increase in hardness for a higher pass of the ECAR process. Fatigue test results show that fatigue life of AA5083 samples decreases in manufactured sheets of the ECAR process. Also, cyclic softening has been observed in the ECARed sample. The fracture surfaces of samples after fatigue test have been observed with a scanning electron microscope. A comparison of fracture surfaces confirms that the crack growth was intergranular in annealed samples while it changes in ECARed samples to transgranular.  相似文献   

9.
Substructural characteristics of Cu (99.97%) were examined after the Twist channel angular pressing (TCAP) process carried out at ambient temperature. Grain refinement efficiency and resulting thermal stability were evaluated after three passes with respect to utilization of various strain paths. Results were obtained using light microscopy and X-ray diffraction methods; Mechanical properties of extruded materials were also tested. Thermal stability was studied after application of three annealing cycles. Based on the findings, Bc route is the most efficient strain path with respect to the grain refinement; higher speed of extrusion (10 mm/s) corresponds with suppression of the static recrystallization. Measured strength, obtained after three passes (route A), achieved values around 440 MPa homogeneously along the cross section of the extruded material. Homogeneity of deformation was also confirmed by micro-hardness tests. The grain size, determined after three passes, averaged out 1.2 μm. Application of TCAP (three passes) brought markedly homogeneous deformation throughout the processed sample in comparison with classical ECAP process.  相似文献   

10.
The microstructure, mechanical properties, fatigue life and fatigue crack propagation rate of Mg‐8Al‐0.5Zn‐0.3Mn (AZ80) magnesium alloy were investigated after extrusion and equal channel angular pressing (ECAP). The highest ultimate and yield strengths and a large enhancement in the fatigue lifetime were obtained after two passes of ECAP. These were decreased with further pressing, although the grain size became finer. There was a correlation between the fatigue and ultimate strengths of AZ80 alloy. The transition from twinning to dislocation slip has also occurred at an average grain size of 7.9 μm. Simultaneous influences of the grain size and the yield strength caused an almost the same threshold of the stress intensity ratio for different process conditions. Moreover, the enhanced ductility of the ECAPed alloy resulted in an increase in the crack growth resistance because of its better ability to accommodate plastic strains during cycling.  相似文献   

11.
采用连续等通道转角挤压工艺,以连续的方式对Al-Ti-C合金进行多道次挤压,通过观察微观组织演化,探讨晶粒细化机理和力学性能变化。结果表明:连续等通道转角挤压工艺可有效细化Al-Ti-C合金微观组织,晶粒尺寸减小至1μm左右,形变诱导是变形过程中最主要的晶粒细化机制;高密度位错堆积引起Al基体和TiAl_(3)界面的裂纹以及TiAl_(3)内部的空洞产生,裂纹进一步扩展贯穿整个TiAl_(3)颗粒,最终导致第二相TiAl_(3)组织的细化,同时细小的第二相TiAl_(3)组织的钉扎机制和剪切机制促进了Al基体细化;连续等通道转角挤压1道次后,合金硬度提升最明显,与原始态相比提高59.2%;之后随挤压道次的增加,硬度提升的趋势变缓,合金塑性下降,韧性提高。  相似文献   

12.
俞良良  张郑  王快社  王文  贾少伟 《材料导报》2018,32(8):1289-1293
采用搅拌摩擦加工技术(Friction stir processing,FSP)对AZ31镁合金板材进行了单道次加工,研究了加工区域微观组织对力学性能的影响。结果表明,相同前进速度下,旋转速度升高,平均晶粒尺寸增大。搅拌摩擦加工后,晶粒尺寸和织构变化显著影响AZ31镁合金的力学性能,平均晶粒尺寸越大,越易发生孪生变形。织构类型主要包括基面织构和纤维织构。基面织构位于软位向时,屈服强度降低,但纤维织构会弱化基面织构对力学性能的影响。  相似文献   

13.
Abstract

An as cast Al–Mg–Mn alloy with coarse equiaxed grain structure was processed by equal channel angular pressing (ECAP) at 350°C up to eight passes. Systematic studies were made on the microstructural evolution during ECAP by optical microscopy, electron backscattered diffraction and TEM. Equal channel angular pressing led to a considerable grain refinement, resulting in an average cell size of about 1 μm and a fraction of high angle boundaries of 75% after eight pressing passes. Deformation bands were not developed during the ECAP process, and a reasonably equiaxed substructure was obtained even after one pass. The main mechanism of grain refinement was attributed to the continuous dynamic recrystallisation based on the motion of deformation induced dislocations. Discontinuous recrystallisation at grain boundaries and triple junctions also contributed to the refinement, which played an important role especially at high strain of eight passes.  相似文献   

14.
The shear punch testing (SPT) technique and the uniaxial tension tests were employed to evaluate the mechanical properties of the equal channel angularly pressed (ECAPed) AZ31 magnesium alloy. After extruding, the material was ECAPed for 1, 2, and 4 passes using route BC. The grain structure of the material was refined from 20.2 to 1.6 μm after 4 passes of ECAP at 200 °C. The 4 pass ECAPed alloy showed lower yield stress and higher ductility as compared to the as-extruded condition, indicating that texture softening has overcome the strengthening effects of grain refinement. The same trends in strength and ductility were also observed in shear punch testing. Similar shear strength and ductility values of the samples taken perpendicular to the extrusion direction (ED) and normal direction (ND) after 4 passes of ECAP indicated that {0 0 0 2} basal planes were inclined (∼45°) to the extrusion axis. The shear punch testing technique was found to be a useful method for verifying directional mechanical properties of the miniature samples of the ECAPed magnesium alloys.  相似文献   

15.
采用循环扩挤(Cyclic expansion-extrusion,CEE)变形工艺对AZ80镁合金的块状材料进行热挤压加工,观察试样的微观组织与织构,并测试了力学性能。结果表明:AZ80镁合金经过CEE变形后,晶粒的尺寸明显细化,第4道次CEE变形之后,晶粒尺寸从150~230 μm细化至2 μm,整体分布均匀且呈等轴晶;2道次变形后,随着挤压道次的增加,晶粒的细化程度减慢;同时经过CEE变形的AZ80镁合金织构包括了(0001)基面平行于挤压方向与(1120)棱柱面垂直于挤压方向的两种不同纤维织构,随着挤压道次的增加,织构总体强度出现先减后增再减的变化;力学性能相对于均匀化态有着明显的变化,第1道次CEE变形之后,抗拉强度与屈服强度分别达到各自的最大值,为290 MPa和180 MPa,第2道次CEE变形之后,强度出现不随晶粒细化而增强的现象(反Hall-Petch理论),这是因为织构的软化作用强于晶粒的细化作用,而伸长率随着挤压道次的增加而提高。  相似文献   

16.
The main objective of this work is to achieve ultra-fine grained structures within the pure aluminum sheet via equal channel angular rolling (ECAR). An attempt has been made to investigate the microstructural evolution and mechanical properties of the processed specimens in terms of process pass numbers and routes. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) examination showed ultra-fine grains (UFGs) with the average grain size of 0.85, 0.34 μm for the seventh pass, respectively. Yield and tensile strengths and microhardness of specimens were significantly increased upon the first pass; however, elongation was dramatically reduced. Subsequent process cycles caused no considerable improvement on the mechanical properties.  相似文献   

17.
In order to refine the grain size of commercially pure titanium (CP-Ti) to a submicrometer scale, equal channel angular pressing (ECAP) was attempted at a temperature range of 200–300 °C. The experiments revealed that, 250 °C was the minimum temperature at which ten passes of ECAP could be performed in a 105° die without the cracking of billets. An ultrafine-grained (UFG) microstructure with a mean grain size of 183 nm was achieved after 10 passes. The processed CP-Ti displayed high tensile strength of 892 MPa and high elongation to failure of 20.5%. The enhancement in mechanical properties is explained in terms of grain refinement and dislocation density increasing. The high ductility of UFG pure Ti with the absence of strain hardening behavior is attributed to its enhanced strain rate sensitivity.  相似文献   

18.
在众多阻尼材料中,金属阻尼材料既能满足高阻尼减振降噪性能,又具有较高的强度,是理想的阻尼材料.为了提高商业纯铜的力学性能,分析晶粒细化程度对纯铜力学性能和阻尼性能的影响,在室温下对商业纯铜棒进行12道次BC路径等通道转角挤压(ECAP)实验.对挤压后样品进行单轴微拉伸试验和高循环拉伸疲劳试验研究其力学性能;通过动态力学...  相似文献   

19.
In this paper, influence of equal channel angular pressing (ECAP) on the fracture behavior of Al-7075 alloy is experimentally investigated. The specimens are successfully processed by ECAP methodology up to four passes using different routes. Transmission electron microscope (TEM) images showed that after four passes of ECAP, the average grain size is refined from 40 μm to less than about 500 nm. The percentage increase in yield strength, ultimate strength and microhardness of the specimens after four ECAP passes was 230, 90 and 110 respectively. Standard tests on the disk-shaped compact DC(T) specimens showed that fracture toughness is decreased up to 8% at the first ECAP pass while after four passes, this parameter roused to 17% higher than that of annealed condition. Furthermore, scanning electron microscope (SEM) micrographs demonstrated that ductile fracture mechanism with large dimples occurred in the annealed samples, changed to limited ductile fracture with fine dimples after ECAP process. This research provides new insights into the effect of ECAP and grain refinement on the fracture behavior of materials.  相似文献   

20.
Electron backscattered diffraction (EBSD) was used to document the microstructure and texture developed due to cross deformation of commercial purity 1050 aluminum alloy. The materials are first deformed in equal channel angular pressing die (ECAP) to different number of passes; 1,4, 8, 12, and 16 passes, via route BC and then deformed in plane strain compression (PSC) to two axial true plastic strain values of 0.5 and 1.0. Deformation path change was proven to be a very effective tool for manipulating the evolution of microstructure and microtexture. The study provides a documentation of the evolution of microstructure parameters namely cell size, misorientation angle, fraction of submicron grain size, and fraction of high angle grain boundaries. These microstructure parameters were investigated on two planes; the plane normal to the loading direction in PSC (RD–TD) and that plane normal to the transverse direction (RD–ND). These microstructure parameters are compared to those achieved due to the ECAP process only. The ideal rolling texture orientations are depicted and crystal orientation maps were generated. The spatial distribution of grains having these orientations is revealed through these maps. The fraction of the main texture components for a 10° spread around the specified orientations is experimentally calculated and a quantitative idea on the evolution of microtexture is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号