首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of wind machines and battery storage with the diesel plants is pursued widely to reduce dependence on fossil fuels. The aim of this study is to assess the impact of battery storage on the economics of hybrid wind‐diesel power systems in commercial applications by analyzing wind‐speed data of Dhahran, East‐Coast, Kingdom of Saudi Arabia (K.S.A.). The annual load of a typical commercial building is 620,000 kWh. The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 100‐kW commercial wind machines (CWMs) supplemented with battery storage and diesel generators. National Renewable Energy Laboratory's (NREL's) (HOMER Energy's) Hybrid Optimization Model for Electric Renewables (HOMER) software has been employed to perform the economic analysis. The simulation results indicate that for a hybrid system comprising of 100‐kW wind capacity together with 175‐kW diesel system and a battery storage of 4 h of autonomy (i.e. 4 h of average load), the wind penetration (at 37‐m hub height, with 0% annual capacity shortage) is 25%. The cost of generating energy (COE, $/kWh) from this hybrid wind–battery–diesel system has been found to be 0.139 $/kWh (assuming diesel fuel price of 0.1$/L). The investigation examines the effect of wind/battery penetration on: COE, operational hours of diesel gensets. Emphasis has also been placed on un‐met load, excess electricity, fuel savings and reduction in carbon emissions (for wind–diesel without battery storage, wind–diesel with storage, as compared to diesel‐only situation), cost of wind–battery–diesel systems, COE of different hybrid systems, etc. The study addresses benefits of incorporation of short‐term battery storage (in wind–diesel systems) in terms of fuel savings, diesel operation time, carbon emissions, and excess energy. The percentage fuel savings by using above hybrid system is 27% as compared to diesel‐only situation Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Wind energy systems have been considered for Canada's remote communities in order to reduce their costs and dependence on diesel fuel to generate electricity. Given the high capital costs, low-penetration wind–diesel systems have been typically found not to be economic. High-penetration wind–diesel systems have the benefit of increased economies of scale, and displacing significant amounts of diesel fuel, but have the disadvantage of not being able to capture all of the electricity that is generated when the wind turbines operate at rated capacity.Two representative models of typical remote Canadian communities were created using HOMER, an NREL micro-power simulator to model how a generic energy storage system could help improve the economics of a high-penetration wind–diesel system. Key variables that affect the optimum system are average annual wind speed, cost of diesel fuel, installed cost of storage and a storage systems overall efficiency. At an avoided cost of diesel fuel of 0.30 $Cdn/kWh and current installed costs, wind generators are suitable in remote Canadian communities only when an average annual wind speed of at least 6.0 m/s is present. Wind energy storage systems become viable to consider when average annual wind speeds approach 7.0 m/s, if the installed cost of the storage system is less than 1000 $Cdn/kW and it is capable of achieving at least a 75% overall energy conversion efficiency. In such cases, energy storage system can enable an additional 50% of electricity from wind turbines to be delivered.  相似文献   

3.
Three renewable energy technologies (RETs) were analyzed for their feasibility for a small off-grid research facility dependent on diesel for power and propane for heat. Presently, the electrical load for this facility is 115 kW but a demand side management (DSM) energy audit revealed that 15–20% reduction was possible. Downsizing RETs and diesel engines by 15 kW to 100 kW reduces capital costs by $27 000 for biomass, $49 500 for wind and $136 500 for solar.The RET Screen International 4.0® model compared the economical and environmental costs of generating 100 kW of electricity for three RETs compared to the current diesel engine (0 cost) and a replacement ($160/kW) diesel equipment. At all costs from $0.80 to $2.00/l, biomass combined heat and power (CHP) was the most competitive. At $0.80 per liter, biomass’ payback period was 4.1 years with a capital cost of $1800/kW compared to wind's 6.1 years due to its higher initial cost of $3300/kW and solar's 13.5 years due to its high initial cost of $9100/kW. A biomass system would reduce annual energy costs by $63 729 per year, and mitigate GHG emissions by over 98% to 10 t CO2 from 507 t CO2. Diesel price increases to $1.20 or $2.00/l will decrease the payback period in years dramatically to 1.8 and 0.9 for CHP, 3.6 and 1.8 for wind, and 6.7 and 3.2 years for solar, respectively.  相似文献   

4.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

5.
Wind resource analysis was carried out for two major islands in the Fiji. Wind data from July 1993 to June 2005 from NASA data base was analysed. Annual seasonal variation in wind speed, direction and power density were analysed for various locations. The average yearly wind speed for Fiji is between 5 and 6 m/s with average power density of 160 W/m2. Site specific validation showed no significant relationship between NASA and experimental data. The wind resource at Laucala Bay has a power density of 131 W/m2 at 55 m. The expected annual energy produced from a 275 kW GEV Vergnet wind turbine is 344 MWh. The capacity factor of the turbine is expected to be 14.3% with an overall efficiency of 37%. The electricity generated would cost $FJ 0.27 per kWh. The system will payback its worth in 12.2 years.  相似文献   

6.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

7.
Analysis of the wind characteristics in Ras Benas city located on the east coast of Red Sea in Egypt using measured data (wind, pressure and temperature) and Weibull function were made.Statistical analysis model to evaluate the wind energy potential was introduced. According to the power calculations done for the site, the annual mean wind density is 315 kW/m2 at a height of 70 m above ground level. This station has a huge wind energy potential for electricity generation, especially during spring and summer seasons, comparing with some European countries.In addition, the monthly wind turbine efficiency parameter (ηmonthly) has been calculated by using a commercial wind turbine 1 MW with 70 m hub height to help designers and users in evaluating the potentialities and choosing the suitable wind turbine for the considered site. The use of wind turbine with capacity greater than 1000 kW at this station was recommended.Ras Benas station was selected to install 30 MW-wind farm consists of 20 commercial wind turbines (Nordex S 77) with hub heights and Rotor diameter were 100 and 77 m, respectively. This site has annual wind speed more than 9.8 m/s at 100 m height and enough area to locate these turbines.The estimated energy production using WASP Program of these wind farm was 130 GWh/year. Furthermore, the production costs was found 1.3€ cent/kWh, which is a competition price at the wind energy world market.  相似文献   

8.
Hydrogen is one of the energy carriers that can be produced using different techniques. Combining multiple energy sources can enhance hydrogen production and meet other electrical demands. The hybrid arrangement allows the produced hydrogen to be stored and used when the electrical energy sources are not adequate. In this study, utilizing the meteorological data was investigated using HOMER (Hybrid Optimization of Multiple Energy Resources) software for the optimal solution. The results demonstrated that the “best-optimized system has 270 kW of photovoltaic (PV), 1 unit of 300 kW of wind turbine (WT), 500 kW of electrolyzer, 100 kg/L of the hydrogen tank, 70 units of 1 kWh lithium-ion battery, and 472 kW of the converter. The selected hybrid energy system has the lowest Levelized cost of energy (LCOE), Levelized cost of hydrogen (LCOH), and net present cost (NPC) of $/kg 0.6208, $/kg 9.34, and $ 484,360.00 respectively which judged the system to be the best choice for the proposed hydrogen project in AI-Kharj. This investigation will help stakeholders and policymakers optimize hybrid energy systems that economically meet the hydrogen production and refueling station demands of the AI-Kharj community.  相似文献   

9.
Depleting oil and gas reserves, combined with growing concerns of atmospheric pollution/degradation, have made the search for energy from renewable sources of energy, such as solar and wind, inevitable. Literature indicates that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, hourly mean wind-speed and solar radiation data for the period 1986–1997 recorded at the solar radiation and meteorological monitoring station, Dhahran (26°32′ N, 50°13′ E), Saudi Arabia, have been analyzed to investigate the potential of utilizing hybrid (wind+solar) energy conversion systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620 000 kWh). The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 kWh/m2 to 7.96 kWh/m2. The hybrid systems considered in the present analysis consist of different combinations of commercial 10 kW wind energy conversion systems (WECS), photovoltaic (PV) panels supplemented with battery storage unit and diesel back-up. The study shows that with 30 10-kW WECS together with 150 m2 PV, and 3 days of battery storage, the diesel back-up system has to provide 17% of the load demand. However, in the absence of battery storage, about 38% of the load needs to be provided by the diesel system.  相似文献   

10.
To show the huge potential of PV systems, the authors have been studying the feasibility of large-scale PV plants. If a PV module cost is assumed to be 100¥/W, it gives the electricity at a cost of 7.70−13.12 ¥/kWh for a 100 MW plant size located at 6 desert sites around the world, considering the site irradiation,local labor cost, etc. for each site. In spite of the fixed, flat plate, the cost can reach a fairly low level. The station will be composed of 20 sub-units × 10 units of 500 kW optimum size sub-units.  相似文献   

11.
A technical and economic assessment has been made of the generation of electricity using wind turbines at one of the most promising wind sites in Egypt: Hurghada. In this paper, we used wind data recorded over 23 years for this site. The WASP program was used to calculate the values of wind speed frequency for the station, their seasonally values have been estimated and compared with measured data.Weibull parameters and the power law coefficient (n) for all seasons at different heights (10–70 m) has been estimated and used to describe the distribution and behavior of seasonal wind speed and their frequencies at Hurghada. The monthly and annual values of wind potential at a height of 70 m were obtained by extrapolation of the 10 m data from the results of our previous article [Ahmed Shata AS, Hanitsch R. The potential of electricity generation on the east coast of Red Sea in Egypt. Renew Energy 2006;31:1597–615] using the power law.Also, the monthly plant load factor (PLF) has been estimated, which is used to determine the expected annual energy output of a wind energy conversion system (WECS).Variation of annual capacity factor with rated wind speed for 10 different wind turbines has been studied. The lower the rated speed for the WECS of the same height, the higher will be the capacity factor values. The expected electrical energy cost of kWh produced by the wind turbine (Repower MM82) with a capacity of 2 MW considered for Hurghada station was found to be less than 1.5 € cent/kWh.  相似文献   

12.
Nova Scotia, Canada's community feed-in tariff (COMFIT) scheme is the world's first feed-in tariff program specifically targeting locally-based renewable energy projects. This study investigated selected turbine capacities to optimize electricity production, based on actual wind profiles for three sites in Nova Scotia, Canada (i.e., Sydney, Caribou Point, and Greenwood). The turbine capacities evaluated are also eligible under the current COMFIT-large scheme in Nova Scotia, including 100 kW, 900 kW and 2.0 MW turbines. A capital budgeting model was developed and then used to evaluate investment decisions on wind power production. Wind duration curves suggest that Caribou Point had the highest average wind speeds but for shorter durations. By comparison, Sydney and Greenwood had lower average wind speeds but with longer durations. Electricity production cost was lowest for the 2.0 MW turbine in Caribou Point ($0.07 per kWh), and highest for the 100 kW turbine located in Greenwood ($0.49 per kWh). The most financially viable wind power project was the 2.0 MW turbine assumed to operate at 80 m hub height in Caribou Point, with NPV=$251,586, and BCR=1.51. Wind power production for the remaining two sites was generally not financially feasible for the turbine capacities considered. The impact of promoting local economic development from wind power projects was higher in a scenario under which wind turbines were clustered at a single site with the highest wind resources than generating a similar level of electricity by distributing the wind turbines across multiple locations.  相似文献   

13.
Nowadays, the development of hydrogen economy in the transportation sector is hindered by the principal barriers arising from the lack of adequate infrastructure and the small fleet of hydrogen-based road vehicles.This study investigates the potential of small-scale autonomous hydrogen refuelling stations with onsite production via an alkaline electrolysis apparatus powered by a small wind turbine. In this context, an urban area with promising wind resources has been selected. Based on the wind conditions and an indicative hydrogen demand for refuelling light-duty fuel cell electric vehicles such as bicycles, the sizing of the wind turbine and the electrolyser has been theoretically calculated. For supporting the daily hydrogen refuelling demand of the fuel cell electric bicycles, which is estimated at approximately 6 kg, it is calculated that a 50 kW wind turbine should be installed in order to power a 70 kW alkaline electrolyser for producing hydrogen. The capital cost of the hydrogen station is calculated at €248,130, while the retail price of the produced hydrogen is estimated to be more than 50.2 €/kgH2 in order to achieve a positive internal rate of return.Ultimately, the present paper aims at delivering a feasibility study of a small-scale H2 refuelling station for fuel cell bicycles in order to provide investors with initiatives to implement such schemes in urban environments where problems of low air quality and high traffic are intense.  相似文献   

14.
This work presents an assessment of per unit cost of electricity generated from 15 MW wind farm at 40 locations in the coastal areas of Pakistan using the method of net present value analysis. The Nordex N43/600 wind turbine has been selected and used as reference wind turbine. Wind duration curves were developed and utilized to calculate per unit cost of electricity generated from chosen wind turbine. In Sindh province, the minimum cost of electricity generated was found to be 4.2 ¢/kWh at Jamshoro, while the corresponding maximum was 7.4 ¢/kWh at Kadhan site. In Balochistan, the minimum cost of electricity generated was found to be 6.3 ¢/kWh at Aghore, while the corresponding maximum was 21.0 ¢/kWh at Mand site. The study concludes that at most of the locations especially in Sindh province, wind power is competitive to conventional grid connected thermal power even without considering the externalities.  相似文献   

15.
The study was conducted to determine the consequences of a carbon tax, equal to an estimated social cost of carbon of $37.2/Mg, on household electricity cost, and to determine if a carbon tax would be sufficient to incentivize households to install either a grid-tied solar or wind system. U.S. Department of Energy hourly residential profiles for five locations, 20 years of hourly weather data, prevailing electricity pricing rate schedules, and purchase prices and solar panel and wind turbine power output response functions, were used to address the objectives. Two commercially available household solar panels (4 kW, 12 kW), two wind turbines (6 kW, 12 kW), and two price rate structures (traditional meter, smart meter) were considered. Averaged across the five households, the carbon tax is expected to reduce annual consumption by 4.4% (552 kWh/year) for traditional meter households and by 4.9% (611 kWh/year) for households charged smart meter rates. The carbon tax increases electricity cost by 19% ($202/year). For a household cost of $202/year the carbon tax is expected to reduce social costs by $11. Annual carbon tax collections of $234/household are expected. Adding the carbon tax was found to be insufficient to incentivize households to install either a solar panel or wind turbine system. Installation of a 4 kW solar system would increase the annual cost by $1546 (247%) and decrease CO2 emissions by 38% (2526 kg) valued at $94/household. The consequence of a carbon tax would depend largely on how the proceeds of the tax are used.  相似文献   

16.
The combined utilization of renewables such as solar and wind energy is becoming increasingly attractive and is being widely used for substitution of oil-produced energy, and eventually to reduce air pollution. In the present investigation, hourly wind-speed and solar radiation measurements made at the solar radiation and meteorological monitoring station, Dhahran (26°32′N, 50°13′E), Saudi Arabia, have been analyzed to study the impact of key parameters such as photovoltaic (PV) array area, number of wind machines, and battery storage capacity on the operation of hybrid (wind + solar + diesel) energy conversion systems, while satisfying a specific annual load of 41,500 kWh. The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 to 7.96 kWh/m2. Parametric analysis indicates that with two 10 kW wind machines together with three days of battery storage and photovoltaic deployment of 30 m2, the diesel back-up system has to provide about 23% of the load demand. However, with elimination of battery storage, about 48% of the load needs to be provided by diesel system.  相似文献   

17.
The utilization of energy from renewable sources, such as wind, is becoming increasingly attractive and is being widely used for the substitution of oil-produced energy, and eventually to minimize atmospheric degradation. Literature shows that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, hourly mean wind-speed data for the period 1986–1997 recorded at the solar radiation and meteorological monitoring station, Dhahran (26° 32′ N, 50° 13′ E), Saudi Arabia, have been analyzed to investigate/examine the role of hybrid (wind+diesel) energy conversion systems in meeting the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The hybrid systems considered in the present analysis consist of different combinations of the commercial 10 kW wind energy conversion systems (WECS), supplemented with battery storage unit and diesel back-up. The study shows that with thirty 10 kW WECS and 3 days of battery storage, the diesel back-up system has to provide 19% of the load demand. However, in the absence of battery storage, about 40% of the load needs to be provided by the diesel system.  相似文献   

18.
Cross utilization of photovoltaic/wind/battery/fuel cell hybrid-power-system has been demonstrated to power an off-grid mobile living space. This concept shows that different renewable energy sources can be used simultaneously to power off-grid applications together with battery and hydrogen energy storage options. Photovoltaic (PV) and wind energy are used as primary sources and a fuel cell is used as backup power. A total of 2.7 kW energy production (wind and PV panels) along with 1.2 kW fuel cell power is supported with 17.2 kWh battery and 15 kWh hydrogen storage capacities. Supply/demand scenarios are prepared based on wind and solar data for Istanbul. Primary energy sources supply load and charge batteries. When there is energy excess, it is used to electrolyse water for hydrogen production, which in turn can either be used to power fuel cells or burnt as fuel by the hydrogen cooker. Power-to-gas and gas-to-power schemes are effectively utilized and shown in this study. Power demand by the installed equipment is supplied by batteries if no renewable energy is available. If there is high demand beyond battery capacity, fuel cell supplies energy in parallel. Automatic and manual controllable hydraulic systems are designed and installed to increase the photovoltaic efficiency by vertical axis control, to lift up & down wind turbine and to prevent vibrations on vehicle. Automatic control, data acquisition, monitoring, telemetry hardware and software are established. In order to increase public awareness of renewable energy sources and its applications, system has been demonstrated in various exhibitions, conferences, energy forums, universities, governmental and nongovernmental organizations in Turkey, Austria, United Arab Emirates and Romania.  相似文献   

19.
For the development of the energy infrastructure of remote isolated consumers, an expedient solution is the creation of a modular hybrid energy system based on renewable energy sources, which will save tens of billions of rubles a year by saving expensive diesel fuel. Taking into account the high wind energy resource in these territories, the use of wind power plants as part of that system is justified. The article discusses the methodology for substantiating the parameters and modes of operation of an autonomous wind-diesel power complex based on the territorial-power classification of power supply systems and a 4-level methodology for optimizing parameters, an example of upgrading an existing diesel power plant in the Arkhangelsk region is given. The existing diesel units with a capacity of 1300 kW were replaced by a modular wind-diesel power system with a high renewable penetration level (58%) with four wind turbines with a capacity of 200 kW and a storage system with a capacity of 65 kWh. This made it possible to achieve a diesel fuel replacement share of 232 000 L per year, which in monetary terms in 2021 prices is 25 million rubles per year. As a promising direction, a variant of the territorial development of the energy sector of the Leshukonsky district of the Arkhangelsk region based on wind energy with the possibility of producing up to 100 tons of “green” hydrogen annually is considered. Various options for reducing harmful emissions in the region were considered, the maximum use of local resources allows saving up to 22 000 tons of CO2e per year.  相似文献   

20.
The current research examined the usage of fuel cells as an energy storage unit to increase renewable energy self-consumption in microgrid energy system applications. The studied model is comprised of photovoltaic modules and a fuel cell that serves as the energy storage unit. The study was conducted in 2020, utilizing real-time weather and electrical load data with a one-minute temporal resolution. The daily average energy consumption for the analyzed household was 10.1 kWh, with a peak power output of 5.3 kW, and the yearly energy consumption was 3755 kWh. The investigated photovoltaic system has a capacity of 2.7 kWp (6 modules at 0.45 kWp/module), and the fuel cell capacity is in the range of 0–3 kW in order to obtain optimal integration with the photovoltaic system to get maximum renewable energy fraction utilization. The findings indicate that using fuel cells powered by hydrogen generated by renewable energy systems can significantly increase self-consumption and self-sufficiency. The annual results showed that the use of 2.5 kW fuel cells can increase renewable fraction utilization from 0.622 to 0.918 with a 2.5 kW fuel cell, and energy self-consumption can reach 3338.2 kWh/year, an increase of 98.4%, and energy self-sufficiency can reach 3218.8 kWh/year, an increase of 94.41%. The results obtained demonstrate that the proposed photovoltaic fuel cell energy system provides a viable option to run semi-autonomous or fully autonomous applications in a self-sustaining medium at a percentage of 95%. Furthermore, the economic aspect is analysed for the optimal system configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号